Skip to main content
Log in

X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract.

X-ray absorption spectroscopy (XAS) has become a prominent tool for the element-specific analysis of transition metals at the catalytic center of metalloenzymes. In the present study the information content of X-ray spectra with respect to the nuclear geometry and, in particular, to the electronic structure of the protein-bound metal ions is explored using the manganese complex of photosystem II (PSIII) as a model system. The EXAFS range carries direct information on the number and distances of ligands as well as on the chemical type of the ligand donor function. For first-sphere ligands and second-sphere metals (in multinuclear complexes), the determination of precise distances is mostly straightforward, whereas the determination of coordination numbers clearly requires more effort. The EXAFS section starts with an exemplifying discussion of a PSII spectrum data set with focus on the coordination number problem. Subsequently, the method of linear dichroism EXAFS spectroscopy is introduced and it is shown how the EXAFS data leads to an atomic resolution model for the tetra-manganese complex of PSII. In the XANES section the following aspects are considered: (1) Alternative approaches are evaluated for determination of the metal-oxidation state by comparison with a series of model compounds. (2) The interpretation of XANES spectra in terms of molecular orbitals (MOs) is approached by comparative multiple-scattering calculations and MO calculations. (3) The underlying reasons for the oxidation-state dependence of the XANES spectra are explored. Furthermore, the potential of modern XANES theory is demonstrated by presenting first simulations of the dichroism in the XANES spectra of the PSII manganese complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A–F.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9A–C.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13A, B.
Fig. 14.
Fig. 15A, B.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Sausalito

  2. Cowan JA (1996) Inorganic biochemistry: an introduction. Wiley, New York

    Google Scholar 

  3. Hill HAO, Sadler PJ, Thomson AJ (1999) Metal sites in proteins and models. Springer, Berlin Heidelberg New York

  4. Yachandra VK (1995) Meth Enzymol 246:638–678

    CAS  PubMed  Google Scholar 

  5. George GN, Hedman B, Hodgson KO (1998) Nature Struc Biol—Synchrotron Supplement:645–647

  6. Scott RA (2000) In: Que L (ed) Physical methods in bioinorganic chemistry—spectroscopy and magnetism. University Science Books, Sausalito, pp 465–504

  7. Dau H, Haumann M (2003) J Synchrotron Rad 10:76–85

    Article  CAS  Google Scholar 

  8. Special issue on BioXAS (2003) J Synchrotron Rad 10(1)

  9. Dau H, Dittmer J, Epple M, Hanss J, Kiss E, Rehder D, Schultze C, Vilter H (1999) FEBS Lett 457:237–240

    Article  CAS  PubMed  Google Scholar 

  10. Peariso K, Zhou ZS, Smith AE, Matthews RG, Penner-Hahn JE (2001) Biochemistry 40:987–993

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Peng G, Miller LM, Scheuring EM, George SJ, Chance MR, Cramer SP (1997) J Am Chem Soc 119:4921–4928

    Article  CAS  Google Scholar 

  12. Wang H, Ge P, Riordan CG, Brooker S, Woomer CG, Collins T, Melendres CA, Graudejus O, Bartlett N, Cramer SP (1998) J Phys Chem B 102:8343–8346

    Article  CAS  Google Scholar 

  13. Wang H, Patil DS, Gu W, Jacquamet L, Friedrich S, Funk T, Cramer SP (2001) J Electron Spectrosc Relat Phenom 114–116:855–863

    Google Scholar 

  14. Cramer SP, DeGroot FMF, Ma Y, Chen CT, Sette F, Kipke CA, Eichhorn DM, Chan MK, Armstrong WH, Libby E, Christou G, Brooker S, McKee V, Mullins C, Fuggleg JC (1991) J Am Chem Soc 113:7937–7940

    CAS  Google Scholar 

  15. Ralston CY, Wang HX, Ragsdale SW, Kumar M, Spangler NJ, Ludden PW, Gu W, Jones RM, Patil DS, Cramer SP (2000) ) J Am Chem Soc 122:10553–10560

    Google Scholar 

  16. DeBeer GS, Metz M, Szilagyi RK, Wang H, Cramer SP, Lu Y, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2001) J Am Chem Soc 123:5757–5767

    Article  PubMed  Google Scholar 

  17. Meinke C, Sole AV, Pospisil P, Dau H (2000) Biochemistry 39:7033–7040

    Google Scholar 

  18. Haumann M, Grabolle M, Neisius T, Dau H (2002) FEBS Lett 512:116–120

    Article  CAS  PubMed  Google Scholar 

  19. Ascone I, Meyer-Klaucke W, Murphy L (2003) J Synchrotron Rad 10:16–22

    Article  CAS  Google Scholar 

  20. Haumann M, Pospisil P, Grabolle M, Müller C, Liebisch P, Sole AV, Neisius T, Dittmer J, Iuzzolino L, Dau H (2003) J Synchrotron Rad 10:76–85

    Article  CAS  Google Scholar 

  21. Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin Heidelberg New York

  22. Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  23. Teo BK (1986) EXAFS: basic principles and data analysis. Springer, Berlin Heidelberg New York

  24. Koningsberger DC, Mojet BL, vanDorssen GE, Ramaker DE (2000) Topics in catalysis 10:143–155

    Article  CAS  Google Scholar 

  25. Binsted N, Hasnain SS (1996) J Synchrotron Rad 3:185–196

    Article  CAS  Google Scholar 

  26. Natoli CR, Benfatto, M, Della Longa S, Hatada K (2003) J Synchrotron Rad 10:26–42

    Article  CAS  Google Scholar 

  27. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 12:7565–7576

    Google Scholar 

  28. Kirby JA, Robertson AS, Smith JP, Thompson AC, Cooper SR, Klein MP (1981a) J Am Chem Soc 103:5529–5537

  29. Kirby JA, Goodin DB, Wydrzynski T, Robertson AS, Klein MP (1981b) J Am Chem Soc 103:5537–5542

  30. MacLachlan DJ, Hallahan BJ, Ruffle SV, Nugent JH, Evans MC, Strange RW, Hasnain SS (1992) Biochem J 285:569–576

    CAS  PubMed  Google Scholar 

  31. Ono T, Nogushi T, Inoue Y, Kusunoki M, Matsushita T, Oyanagi H (1992) Science 258:1335–1337

    CAS  Google Scholar 

  32. Penner-Hahn JE (1999) In: Hill HAO, Sadler PJ, Thomson AJ (eds) Metal sites in proteins and models: redox centres. Springer, Berlin, Heidelberg New York, pp 1–36

  33. Robblee JH, Cinco RM, Yachandra VK (2001) Biochim Biophys Acta 1503:7–23

    Article  CAS  PubMed  Google Scholar 

  34. Dau H, Iuzzolino L, Dittmer J (2001) Biochim Biophys Acta 1503:24–39

    Article  CAS  PubMed  Google Scholar 

  35. Iuzzolino L, Dittmer J, Doerner W, Meyer-Klaucke W, Dau H (1998) Biochemistry 37:17112–17119

    Article  CAS  PubMed  Google Scholar 

  36. Schiller H, Dittmer J, Iuzzolino L, Doerner W, Meyer-Klaucke W, Sole VA, Nordstroem T, Dau H (1998) Biochemistry 37:7340–7350

    Article  CAS  PubMed  Google Scholar 

  37. Schiller H, Dau H (2000) J Photochem Photobiol B 55:138–144

    Article  CAS  PubMed  Google Scholar 

  38. Pospisil P, Haumann M, Dittmer J, Sole AV, Dau H (2003) Biophys J 84:1370–1386

    CAS  PubMed  Google Scholar 

  39. Dittmer J, Iuzzolino L, Dörner W, Nolting, H-F, Meyer-Klaucke W, Dau H (1998) In: Garab G (ed) Photosynthesis: mechanism and effects, vol II. Kluwer, Dordrecht, pp 1339–1342

  40. Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589–599

    CAS  Google Scholar 

  41. Stavrev KK, Zerner MC (1995) J Chem Phys 102:34–38

    Article  CAS  Google Scholar 

  42. Stavrev KK, Zerner MC, Meyer TJ (1995) J Am Chem Soc 117:8684–8685

    CAS  Google Scholar 

  43. Sayers DE, Stern, EA, Lytle FW (1971) Phys Rev Lett 27:1204–1207

    Article  CAS  Google Scholar 

  44. Gurman SJ, Binsted N, Ross I (1983) J Phys C 17:143–151

    Google Scholar 

  45. Gurman SJ (1988) J Phys C 21:3699–3717

    Article  Google Scholar 

  46. Mustre de Leon J, Yacoby Y, Stern EA, Rehr JJ (1990) Phys Rev B 42:10843–10851

    Google Scholar 

  47. Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC (1991) Phys Rev B 44:4146–4156

    Article  Google Scholar 

  48. Rehr JJ, Ankudinov AL (2001) J Synchrotron Rad 8:61–65

    Article  CAS  Google Scholar 

  49. Ashley CA, Doniach S (1975) Phys Rev B 11:1279–1288

    Google Scholar 

  50. DeRose VJ, Latimer MJ, Zimmermann JL, Mukerji I, Yachandra VK, Sauer K, (1995) Chem Phys 194:443–459

    Article  Google Scholar 

  51. Robblee JH, Messinger J, Cinco RM, McFarlane KL, Fernandez C, Pizarro SA, Sauer K, Yachandra VK (2002) J Am Chem Soc 124:7459–7471

    Article  CAS  PubMed  Google Scholar 

  52. Dörner W, Dittmer J, Iuzzolino L, Dau H (1998) In: Garab G (ed) Photosynthesis: mechanism and effects, vol II. Kluwer, Dordrecht, pp 1343–1346

  53. Latimer MJ, DeRose VJ, Mukerji I, Yachandra VK, Sauer K, Klein MP (1995) Biochemistry 34:10898–10909

    CAS  PubMed  Google Scholar 

  54. Cinco RM, Robblee JH, Rompel A, Fernandez C, Yachandra VK, Sauer K, Klein MP (1998) J Phys Chem B 102:8248–8256

    Article  CAS  Google Scholar 

  55. Cinco RM, McFarlane Holman KL, Robblee JH, Yano J, Pizarro SA, Bellacchio E, Sauer K, Yachandra VK (2002) Biochemistry 41:12928–12933

    Article  CAS  PubMed  Google Scholar 

  56. Haumann M, Grabolle M, Werthammer M, Iuzzolino L, Dittmer J, Meyer-Klaucke W, Neisius T, Dau H (2001) In: PS2001 Proceedings. CSIRO, Collingwood, Australia, contribution S10–013, pp 1–5

  57. Koningsberger DC (1994) In: Baruchel J, Hodeau JL, Lehmann MS, Regnard JR, Schlenker C (eds) Neutron and synchrotron radiation for condensed matter studies, vol II. Springer, Berlin Heidelberg New York, p 213

  58. Mukerji I, Andrews JC, DeRose VJ, Latimer MJ, Yachandra VK, Sauer K, Klein MP (1994) Biochemistry 33:9712–9721

    CAS  PubMed  Google Scholar 

  59. Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Biochemistry 34:5274–5287

    CAS  PubMed  Google Scholar 

  60. Dittmer J, Dau H (1998) J Phys Chem B 102:8196–8200

    Article  CAS  Google Scholar 

  61. Benfatto M, Natoli CR, Brouder C, Pettifer RF, Ruiz López MF (1989) Phys Rev B 39:1936−1939

    Google Scholar 

  62. Binsted N, Strange RW, Hasnain SS (1992) Biochemistry 31:12117–12125

    CAS  PubMed  Google Scholar 

  63. Pettifer RF, Brouder C, Benfatto M, Natoli CR, Hermes C, Ruiz López MF (1990) Phys Rev B 42:37–42

    Google Scholar 

  64. Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Nature 409:739–743

    Google Scholar 

  65. Yachandra VK (2002) Philos Trans R Soc Lond B Biol Sci 357:1347–1357

    Article  CAS  PubMed  Google Scholar 

  66. Carrell G, Tyryshkin M, Dismukes C (2002) J Biol Inorg Chem 7:2–22

    Article  CAS  PubMed  Google Scholar 

  67. Sauer K, Yachandra VK, Britt RD, Klein M (1992) In: Pecoraro VL (ed) Manganese redox enzymes. VCH, New York, pp 85–103

  68. Bossek U, Hummel H, Weyhermüller T, Wieghardt K, Russel S, van der Wolf L, Kolb W (1996) Angew Chem 108:1653–1656

    Google Scholar 

  69. Stemmler TL, Sossong TM Jr, Goldstein JI, Ash DE, Elgren TE, Kurtz DM Jr, Penner-Hahn JE (1997) Biochemistry 36:9847–9858

    Article  CAS  PubMed  Google Scholar 

  70. Roelofs TA, Liang W, Latimer MJ, Cinco RM, Rompel A, Andrews JC, Sauer K, Yachandra VK, Klein M (1996) Proc Natl Acad Sci USA 93:3335–3340

    Article  CAS  PubMed  Google Scholar 

  71. Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) J Am Chem Soc 123:7804–7820

    Article  CAS  PubMed  Google Scholar 

  72. Visser H, Anxolabehere-Mallart E, Bergmann U, Glatzel P, Robblee JH, Cramer SP, Girerd JJ, Sauer K, Klein MP, Yachandra VK (2001) J Am Chem Soc 123:7031–7039

    Article  CAS  PubMed  Google Scholar 

  73. Dismukes GC, Siderer Y (1981) Proc Natl Acad Sci USA 78:274–278

    CAS  Google Scholar 

  74. Miller A-F, Brudvig GW (1991) Biochim Biophys Acta 1056:1–18

    CAS  PubMed  Google Scholar 

  75. Messinger J, Nugent JHA, Evans MCW (1997) Biochemistry 36:11055–11060

    Article  CAS  PubMed  Google Scholar 

  76. Åhrling KA, Peterson S, Styring S (1998) Biochemistry 37:8115–8120

    Article  CAS  PubMed  Google Scholar 

  77. Boussac A, Kuhl H, Ghibaudi E, Rögner M, Rutherford AW (1999) Biochemistry 38:11942–11948

    Article  CAS  PubMed  Google Scholar 

  78. Dittmer J (1999) PhD thesis, Christian-Albrechts-Universität Kiel, Germany

  79. Winstead CL, Langhoff PW (1988) Chem Phys Lett 151:417–424.

    Article  CAS  Google Scholar 

  80. Gil TJ, Winstead CL, Langhoff PW (1989) Comp Phys Comm 53:123–131

    Article  Google Scholar 

  81. Gil TJ, Winstead CL, Sheehy JA, Farren RE, Langhoff PW (1990) Physica Scripta T31(Proc Int Conf Vac Ultraviolet Rad Phys, 9th, 1989):179–188

  82. Kasrai M, Fleet ME, Bancroft GM, Tan KH, Chen JM (1991) Phys Rev B 43:1763–1772

    Article  CAS  Google Scholar 

  83. Riggs-Gelasco PJ, Penner-Hahn JE (1995) Adv Chem Ser 246:219–248

    CAS  Google Scholar 

  84. Lytle FW, Greegor RB and Panson A J (1988) Phys Rev B 37:1550–1562.

    Google Scholar 

  85. Sheehy JA, Gil TJ, Winstead CL, Farren RE, Langhoff PW (1989) J Chem Phys 91:1796–1812

    Article  CAS  Google Scholar 

  86. Blomberg MRA, Siegbahn PEM, Styring S, Babcock GT, Akermark B, Korall P (1997) J Am Chem Soc 119:8285–8292

    Article  CAS  Google Scholar 

  87. Mijovilovich A, Meyer-Klaucke W (2003) J Synchrotron Rad 10:64–68

    Article  CAS  Google Scholar 

  88. Frenkel AI, Ankudinov AL, Korshin GV (2000) Environ Sci Technol 34:2138–2142

    Article  CAS  Google Scholar 

  89. Merkling PJ, Munoz-Paez A, Pappalardo RR, Sanchez ME (2001) Phys Rev B 64(92201):1–4

    Google Scholar 

  90. Kusunoki M, Ono T, Matsushita T, Oyanagi H Inoue Y (1990) J Biochem 108:560–567

    CAS  PubMed  Google Scholar 

  91. Krüer M, Haumann M, Meyer-Klaucke W, Thauer KR, Dau H (2002) Eur J Biochem 269:2117–2123

    Article  PubMed  Google Scholar 

  92. Benafetto M, Della Longa S (2001) J Synchrotron Rad 81087–1094

  93. Della Longa S, Arcovito A, Girasole M, Hazemann JL, Benfatto M (2001) Phys Rev Lett 87:155501

    Article  PubMed  Google Scholar 

  94. De Groot F (2001) Chem Rev 101:1779–1808

    Article  PubMed  Google Scholar 

Download references

Acknowledgement.

We thank Drs Hilmar Schiller, Lucia Iuzzolino, Jens Dittmer, Wolfgang Dörner, and Pavel Pospisil as well as Markus Grabolle and Claudia Müller for collection and analysis of XAS data on the PSII manganese complex discussed in this study. The respective BioXAS experiments have been carried out in cooperation with Drs Hans Nolting and Wolfram Meyer-Klaucke at the XAS beamline of the EMBL outstation Hamburg (HASYLAB/DESY, Hamburg). We thank them and the staff of the EMBL outstation for support. Financial support by the German Bundesministerium für Forschung und Technologie (BMBF, program: Erforschung kondensierter Materie, project 05KS1KEA/6) and the Deutsche Forschungsgemeinschaft (DFG, TP C6 and TP C8 in the SFB 498, Berlin) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Dau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dau, H., Liebisch, P. & Haumann, M. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal Bioanal Chem 376, 562–583 (2003). https://doi.org/10.1007/s00216-003-1982-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1982-2

Keywords