Abstract.
X-ray absorption spectroscopy (XAS) has become a prominent tool for the element-specific analysis of transition metals at the catalytic center of metalloenzymes. In the present study the information content of X-ray spectra with respect to the nuclear geometry and, in particular, to the electronic structure of the protein-bound metal ions is explored using the manganese complex of photosystem II (PSIII) as a model system. The EXAFS range carries direct information on the number and distances of ligands as well as on the chemical type of the ligand donor function. For first-sphere ligands and second-sphere metals (in multinuclear complexes), the determination of precise distances is mostly straightforward, whereas the determination of coordination numbers clearly requires more effort. The EXAFS section starts with an exemplifying discussion of a PSII spectrum data set with focus on the coordination number problem. Subsequently, the method of linear dichroism EXAFS spectroscopy is introduced and it is shown how the EXAFS data leads to an atomic resolution model for the tetra-manganese complex of PSII. In the XANES section the following aspects are considered: (1) Alternative approaches are evaluated for determination of the metal-oxidation state by comparison with a series of model compounds. (2) The interpretation of XANES spectra in terms of molecular orbitals (MOs) is approached by comparative multiple-scattering calculations and MO calculations. (3) The underlying reasons for the oxidation-state dependence of the XANES spectra are explored. Furthermore, the potential of modern XANES theory is demonstrated by presenting first simulations of the dichroism in the XANES spectra of the PSII manganese complex.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Sausalito
Cowan JA (1996) Inorganic biochemistry: an introduction. Wiley, New York
Hill HAO, Sadler PJ, Thomson AJ (1999) Metal sites in proteins and models. Springer, Berlin Heidelberg New York
Yachandra VK (1995) Meth Enzymol 246:638–678
George GN, Hedman B, Hodgson KO (1998) Nature Struc Biol—Synchrotron Supplement:645–647
Scott RA (2000) In: Que L (ed) Physical methods in bioinorganic chemistry—spectroscopy and magnetism. University Science Books, Sausalito, pp 465–504
Dau H, Haumann M (2003) J Synchrotron Rad 10:76–85
Special issue on BioXAS (2003) J Synchrotron Rad 10(1)
Dau H, Dittmer J, Epple M, Hanss J, Kiss E, Rehder D, Schultze C, Vilter H (1999) FEBS Lett 457:237–240
Peariso K, Zhou ZS, Smith AE, Matthews RG, Penner-Hahn JE (2001) Biochemistry 40:987–993
Wang H, Peng G, Miller LM, Scheuring EM, George SJ, Chance MR, Cramer SP (1997) J Am Chem Soc 119:4921–4928
Wang H, Ge P, Riordan CG, Brooker S, Woomer CG, Collins T, Melendres CA, Graudejus O, Bartlett N, Cramer SP (1998) J Phys Chem B 102:8343–8346
Wang H, Patil DS, Gu W, Jacquamet L, Friedrich S, Funk T, Cramer SP (2001) J Electron Spectrosc Relat Phenom 114–116:855–863
Cramer SP, DeGroot FMF, Ma Y, Chen CT, Sette F, Kipke CA, Eichhorn DM, Chan MK, Armstrong WH, Libby E, Christou G, Brooker S, McKee V, Mullins C, Fuggleg JC (1991) J Am Chem Soc 113:7937–7940
Ralston CY, Wang HX, Ragsdale SW, Kumar M, Spangler NJ, Ludden PW, Gu W, Jones RM, Patil DS, Cramer SP (2000) ) J Am Chem Soc 122:10553–10560
DeBeer GS, Metz M, Szilagyi RK, Wang H, Cramer SP, Lu Y, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2001) J Am Chem Soc 123:5757–5767
Meinke C, Sole AV, Pospisil P, Dau H (2000) Biochemistry 39:7033–7040
Haumann M, Grabolle M, Neisius T, Dau H (2002) FEBS Lett 512:116–120
Ascone I, Meyer-Klaucke W, Murphy L (2003) J Synchrotron Rad 10:16–22
Haumann M, Pospisil P, Grabolle M, Müller C, Liebisch P, Sole AV, Neisius T, Dittmer J, Iuzzolino L, Dau H (2003) J Synchrotron Rad 10:76–85
Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin Heidelberg New York
Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654
Teo BK (1986) EXAFS: basic principles and data analysis. Springer, Berlin Heidelberg New York
Koningsberger DC, Mojet BL, vanDorssen GE, Ramaker DE (2000) Topics in catalysis 10:143–155
Binsted N, Hasnain SS (1996) J Synchrotron Rad 3:185–196
Natoli CR, Benfatto, M, Della Longa S, Hatada K (2003) J Synchrotron Rad 10:26–42
Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 12:7565–7576
Kirby JA, Robertson AS, Smith JP, Thompson AC, Cooper SR, Klein MP (1981a) J Am Chem Soc 103:5529–5537
Kirby JA, Goodin DB, Wydrzynski T, Robertson AS, Klein MP (1981b) J Am Chem Soc 103:5537–5542
MacLachlan DJ, Hallahan BJ, Ruffle SV, Nugent JH, Evans MC, Strange RW, Hasnain SS (1992) Biochem J 285:569–576
Ono T, Nogushi T, Inoue Y, Kusunoki M, Matsushita T, Oyanagi H (1992) Science 258:1335–1337
Penner-Hahn JE (1999) In: Hill HAO, Sadler PJ, Thomson AJ (eds) Metal sites in proteins and models: redox centres. Springer, Berlin, Heidelberg New York, pp 1–36
Robblee JH, Cinco RM, Yachandra VK (2001) Biochim Biophys Acta 1503:7–23
Dau H, Iuzzolino L, Dittmer J (2001) Biochim Biophys Acta 1503:24–39
Iuzzolino L, Dittmer J, Doerner W, Meyer-Klaucke W, Dau H (1998) Biochemistry 37:17112–17119
Schiller H, Dittmer J, Iuzzolino L, Doerner W, Meyer-Klaucke W, Sole VA, Nordstroem T, Dau H (1998) Biochemistry 37:7340–7350
Schiller H, Dau H (2000) J Photochem Photobiol B 55:138–144
Pospisil P, Haumann M, Dittmer J, Sole AV, Dau H (2003) Biophys J 84:1370–1386
Dittmer J, Iuzzolino L, Dörner W, Nolting, H-F, Meyer-Klaucke W, Dau H (1998) In: Garab G (ed) Photosynthesis: mechanism and effects, vol II. Kluwer, Dordrecht, pp 1339–1342
Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589–599
Stavrev KK, Zerner MC (1995) J Chem Phys 102:34–38
Stavrev KK, Zerner MC, Meyer TJ (1995) J Am Chem Soc 117:8684–8685
Sayers DE, Stern, EA, Lytle FW (1971) Phys Rev Lett 27:1204–1207
Gurman SJ, Binsted N, Ross I (1983) J Phys C 17:143–151
Gurman SJ (1988) J Phys C 21:3699–3717
Mustre de Leon J, Yacoby Y, Stern EA, Rehr JJ (1990) Phys Rev B 42:10843–10851
Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC (1991) Phys Rev B 44:4146–4156
Rehr JJ, Ankudinov AL (2001) J Synchrotron Rad 8:61–65
Ashley CA, Doniach S (1975) Phys Rev B 11:1279–1288
DeRose VJ, Latimer MJ, Zimmermann JL, Mukerji I, Yachandra VK, Sauer K, (1995) Chem Phys 194:443–459
Robblee JH, Messinger J, Cinco RM, McFarlane KL, Fernandez C, Pizarro SA, Sauer K, Yachandra VK (2002) J Am Chem Soc 124:7459–7471
Dörner W, Dittmer J, Iuzzolino L, Dau H (1998) In: Garab G (ed) Photosynthesis: mechanism and effects, vol II. Kluwer, Dordrecht, pp 1343–1346
Latimer MJ, DeRose VJ, Mukerji I, Yachandra VK, Sauer K, Klein MP (1995) Biochemistry 34:10898–10909
Cinco RM, Robblee JH, Rompel A, Fernandez C, Yachandra VK, Sauer K, Klein MP (1998) J Phys Chem B 102:8248–8256
Cinco RM, McFarlane Holman KL, Robblee JH, Yano J, Pizarro SA, Bellacchio E, Sauer K, Yachandra VK (2002) Biochemistry 41:12928–12933
Haumann M, Grabolle M, Werthammer M, Iuzzolino L, Dittmer J, Meyer-Klaucke W, Neisius T, Dau H (2001) In: PS2001 Proceedings. CSIRO, Collingwood, Australia, contribution S10–013, pp 1–5
Koningsberger DC (1994) In: Baruchel J, Hodeau JL, Lehmann MS, Regnard JR, Schlenker C (eds) Neutron and synchrotron radiation for condensed matter studies, vol II. Springer, Berlin Heidelberg New York, p 213
Mukerji I, Andrews JC, DeRose VJ, Latimer MJ, Yachandra VK, Sauer K, Klein MP (1994) Biochemistry 33:9712–9721
Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Biochemistry 34:5274–5287
Dittmer J, Dau H (1998) J Phys Chem B 102:8196–8200
Benfatto M, Natoli CR, Brouder C, Pettifer RF, Ruiz López MF (1989) Phys Rev B 39:1936−1939
Binsted N, Strange RW, Hasnain SS (1992) Biochemistry 31:12117–12125
Pettifer RF, Brouder C, Benfatto M, Natoli CR, Hermes C, Ruiz López MF (1990) Phys Rev B 42:37–42
Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Nature 409:739–743
Yachandra VK (2002) Philos Trans R Soc Lond B Biol Sci 357:1347–1357
Carrell G, Tyryshkin M, Dismukes C (2002) J Biol Inorg Chem 7:2–22
Sauer K, Yachandra VK, Britt RD, Klein M (1992) In: Pecoraro VL (ed) Manganese redox enzymes. VCH, New York, pp 85–103
Bossek U, Hummel H, Weyhermüller T, Wieghardt K, Russel S, van der Wolf L, Kolb W (1996) Angew Chem 108:1653–1656
Stemmler TL, Sossong TM Jr, Goldstein JI, Ash DE, Elgren TE, Kurtz DM Jr, Penner-Hahn JE (1997) Biochemistry 36:9847–9858
Roelofs TA, Liang W, Latimer MJ, Cinco RM, Rompel A, Andrews JC, Sauer K, Yachandra VK, Klein M (1996) Proc Natl Acad Sci USA 93:3335–3340
Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) J Am Chem Soc 123:7804–7820
Visser H, Anxolabehere-Mallart E, Bergmann U, Glatzel P, Robblee JH, Cramer SP, Girerd JJ, Sauer K, Klein MP, Yachandra VK (2001) J Am Chem Soc 123:7031–7039
Dismukes GC, Siderer Y (1981) Proc Natl Acad Sci USA 78:274–278
Miller A-F, Brudvig GW (1991) Biochim Biophys Acta 1056:1–18
Messinger J, Nugent JHA, Evans MCW (1997) Biochemistry 36:11055–11060
Åhrling KA, Peterson S, Styring S (1998) Biochemistry 37:8115–8120
Boussac A, Kuhl H, Ghibaudi E, Rögner M, Rutherford AW (1999) Biochemistry 38:11942–11948
Dittmer J (1999) PhD thesis, Christian-Albrechts-Universität Kiel, Germany
Winstead CL, Langhoff PW (1988) Chem Phys Lett 151:417–424.
Gil TJ, Winstead CL, Langhoff PW (1989) Comp Phys Comm 53:123–131
Gil TJ, Winstead CL, Sheehy JA, Farren RE, Langhoff PW (1990) Physica Scripta T31(Proc Int Conf Vac Ultraviolet Rad Phys, 9th, 1989):179–188
Kasrai M, Fleet ME, Bancroft GM, Tan KH, Chen JM (1991) Phys Rev B 43:1763–1772
Riggs-Gelasco PJ, Penner-Hahn JE (1995) Adv Chem Ser 246:219–248
Lytle FW, Greegor RB and Panson A J (1988) Phys Rev B 37:1550–1562.
Sheehy JA, Gil TJ, Winstead CL, Farren RE, Langhoff PW (1989) J Chem Phys 91:1796–1812
Blomberg MRA, Siegbahn PEM, Styring S, Babcock GT, Akermark B, Korall P (1997) J Am Chem Soc 119:8285–8292
Mijovilovich A, Meyer-Klaucke W (2003) J Synchrotron Rad 10:64–68
Frenkel AI, Ankudinov AL, Korshin GV (2000) Environ Sci Technol 34:2138–2142
Merkling PJ, Munoz-Paez A, Pappalardo RR, Sanchez ME (2001) Phys Rev B 64(92201):1–4
Kusunoki M, Ono T, Matsushita T, Oyanagi H Inoue Y (1990) J Biochem 108:560–567
Krüer M, Haumann M, Meyer-Klaucke W, Thauer KR, Dau H (2002) Eur J Biochem 269:2117–2123
Benafetto M, Della Longa S (2001) J Synchrotron Rad 81087–1094
Della Longa S, Arcovito A, Girasole M, Hazemann JL, Benfatto M (2001) Phys Rev Lett 87:155501
De Groot F (2001) Chem Rev 101:1779–1808
Acknowledgement.
We thank Drs Hilmar Schiller, Lucia Iuzzolino, Jens Dittmer, Wolfgang Dörner, and Pavel Pospisil as well as Markus Grabolle and Claudia Müller for collection and analysis of XAS data on the PSII manganese complex discussed in this study. The respective BioXAS experiments have been carried out in cooperation with Drs Hans Nolting and Wolfram Meyer-Klaucke at the XAS beamline of the EMBL outstation Hamburg (HASYLAB/DESY, Hamburg). We thank them and the staff of the EMBL outstation for support. Financial support by the German Bundesministerium für Forschung und Technologie (BMBF, program: Erforschung kondensierter Materie, project 05KS1KEA/6) and the Deutsche Forschungsgemeinschaft (DFG, TP C6 and TP C8 in the SFB 498, Berlin) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dau, H., Liebisch, P. & Haumann, M. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal Bioanal Chem 376, 562–583 (2003). https://doi.org/10.1007/s00216-003-1982-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-003-1982-2