Skip to main content
Log in

Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Leaching procedures are one of the most widely used approaches to determine phosphorus fractionation in soils and sediments. Within the framework of the Standards, Measurements and Testing programme (SMT), an extraction protocol, based on the Williams procedure, was harmonised in order to improve reproducibility among laboratories. The so called SMT protocol was then used for the certification of a reference material (BCR 684) in five phosphorus fractions: non-apatite, apatite, inorganic, organic and total phosphorus. In the present paper, the SMT protocol has been applied to sediments of different composition (organic, calcareous and Fe-rich sediments). The P, Al, Ca, Fe and Mn contents extracted in each fraction were determined. The relations among these elements and the organic matter content in the samples were studied. The results obtained support the SMT protocol as a valuable tool for the study of phosphorus fractionation in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  1. Gunatilaka A, Herodek S, Istanovics V, Dobolyi E (1988) Arch Hydrobiol Beih Ergebn Limnol 30:93–98

    Google Scholar 

  2. Mesnage V, Picot B (1995) Hydrobiologia 297:29–41

    CAS  Google Scholar 

  3. Boers PCM, Van Raaphorst W, Van der Molen DT (1998) Water Sci Technol 37:31–39

    Article  CAS  Google Scholar 

  4. Pettersson K (1998) Hydrobiologia 373/374:21–25

  5. Forsberg C (1998) Water Sci Technol 37:93–200

    Article  Google Scholar 

  6. Somyódy L (1998) Water Sci Technol 37:165–175

    Google Scholar 

  7. Van Duin EHS, Frinking LJ, Van Schaik FH, Boers PCM (1998) Water Sci Technol 37:185–192

    Article  Google Scholar 

  8. Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Hydrobiologia 235/236:731–743

  9. Zhang M, Alva AK, Li YC, Calvert DV (1997) Soil Sci Soc Am J 61:794–801

    CAS  Google Scholar 

  10. Olila OG, Reddy KR (1997) Hydrobiologia 345:45–57

    Article  CAS  Google Scholar 

  11. Danen-Louwerse H, Lijklema L, Coenraats M (1993) Hydrobiologia 253:311–317

    CAS  Google Scholar 

  12. Lijklema L (1993) Hydrobiologia 253:219–231

    CAS  Google Scholar 

  13. Rydin E, Welch EB (1998) Water Res 32:2969–2976

    Article  CAS  Google Scholar 

  14. Darke AK, Walbridge MR (2000) Biogechemistry 51:1–32

    Article  CAS  Google Scholar 

  15. Gonsiorczyk T, Casper P, Koschel R (1998) Water Sci Technol 37:51–58

    Article  CAS  Google Scholar 

  16. Pettersson K, Böstrom B, Jacobsen OS (1988) Hydrobiologia 170:91–101

    CAS  Google Scholar 

  17. Olila OG, Reddy KR, Harris WG (1995) Hydrobiologia 302:147–161

    CAS  Google Scholar 

  18. De Groot CJ (1990) Hydrobiologia 207:303–309

    Google Scholar 

  19. Kastelan-Macan M, Petrovic M (1996) Water Sci Technol 34:259–265

    Article  CAS  Google Scholar 

  20. Petrovic M, Kastelan-Macan M (1996) Water Sci Technol 34:253–258

    Article  CAS  Google Scholar 

  21. Holtan H, Kamp-Nielsen L, Stuanes AO (1988) Hydrobiologia 170:19–34

    CAS  Google Scholar 

  22. Hieltjes AHM, Lijklema L (1980) J Environ Qual 9:405–407

    CAS  Google Scholar 

  23. Williams JDH, Mayer T, Nriagu JO (1980) Soil Sci Soc Am Proc 44:462–464

    CAS  Google Scholar 

  24. Ruttenberg KC (1992) Limnol Oceanogr 37:1460–1482

    CAS  Google Scholar 

  25. Golterman HL (1996) Hydrobiologia 335:87–95

    CAS  Google Scholar 

  26. Barbanti A, Bergamini MC, Frascari F, Miserocchi S, Rosso G (1994) J Environ Qual 23:1093–1102

    CAS  Google Scholar 

  27. Ruban V, López-Sánchez JF, Pardo P, Rauret G, Muntau H, Quevauviller Ph (1999) J Environ Monit 1:51–56

    Article  CAS  PubMed  Google Scholar 

  28. Ruban V, López-Sánchez JF, Pardo P, Rauret G, Muntau H, Quevauviller Ph (2001) J Environ Monit 3:121–125

    Article  CAS  PubMed  Google Scholar 

  29. Fielder HD, Rubio R, Rauret G, Casals I (1999) Talanta 48:403–407

    Article  Google Scholar 

  30. Murphy J, Riley JP (1962) Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  31. Watanabe FS, Olsen SR (1965) Soil Sci Soc Am Proc 29:677–678

    CAS  Google Scholar 

  32. Pardo P, López-Sánchez JF, Rauret G (1998) Anal Chim Acta 376:183–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Joint Research Center (Ispra, Italy) for supplying sediment samples and the Serveis Científico-Tècnics of the Universitat de Barcelona for assistance on the sample characterisation. The authors would like to acknowledge the financial support of CEC (project SMT4-CT96–2087) and DGICYT (project PB95–0844-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. López-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, P., López-Sánchez, J.F. & Rauret, G. Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Anal Bioanal Chem 376, 248–254 (2003). https://doi.org/10.1007/s00216-003-1897-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1897-y

Keywords

Navigation