Skip to main content
Log in

Kinetic insights into ethynyl radical with isobutane and neopentane

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The rate constants of ethynyl (C2H) radical reaction with isobutane (kiso) and neopentane (kneo) were calculated for the first time using canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) in the temperature range of 150–5000 K. The geometries and frequencies of all the stationary points were calculated at the M06-2X/Aug-cc-pVTZ level of theory. Thermodynamics (ΔH°298 and ΔG°298) results govern that the title reactions are highly exothermic and spontaneous in nature. The rate constants obtained over the temperature range of 150–300 K were used to derive the modified Arrhenius expressions: kiso = 6.84 × 10–19 T2.5 exp[1496/T] and kneo = 1.72 × 10–17 T2.0 exp[938/T] cm3 molecule−1 s−1. Branching ratio calculation for the reaction of C2H radical with isobutane shows that the tertiary-H abstraction channel is dominant (> 95%) over the complete temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wootten A, Bozyan E, Garrett D, Loren R, Snell R (1993) Detection of C2H in cold dark clouds. Astrophys J 239:844

    Article  Google Scholar 

  2. Cherchneff I, Glassgold AE (1993) The Formation of Carbon Chain Molecules in IRC +10216 Astrophys. Astrophys J 419:L41

    Article  CAS  Google Scholar 

  3. Beuther D, Semenov H, Henning T, Linz H (2008) Ethynyl (C2H) in massive star formation: tracing the initial conditions? Astrophys J Lett 675:L33

    Article  CAS  Google Scholar 

  4. Ziurys LM, Saykally RJ, Plambeck R, Erickson N (1982) Detection of the N = 2transion of CCH in orion and determination of the molecular rotational constants. Astrophys J 254:94

    Article  CAS  Google Scholar 

  5. Jackson WM, Blunt VM, Lin H, Green M, Olivera G, Fink WH, Bao Y, Urdahl RS, Mohammad F, Zahedi M (1996) Non-adiabatic interactions in excited C2H molecules and their relationship to C2 formation in comets Astrophys. Space Sci 236:29

    Article  CAS  Google Scholar 

  6. Kern RD, Xie K (1990) Shock tube studies of gas phase reactions preceding the soot formation process Prog. Energy Combust Sci 17:191

    Article  Google Scholar 

  7. Kiefer JH, Von Drasek WA, Von Drasek WA (1990) The mechanism of the homogeneous pyrolysis of acetylene Int. J Chem Kinet 22:747

    Article  CAS  Google Scholar 

  8. Boullart W, Devriendt K, Borms R, Peeters J (1996) J Phys Chem 100:998

    Article  CAS  Google Scholar 

  9. Hansen N, Klippenstein SJ, Westmoreland P, Kasper T, Kohse-Höinghaus K, Wang J, Cool T (2008) A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Phys Chem Chem Phys 10:366

    Article  CAS  Google Scholar 

  10. Coustenis A, Be´zard B, Gautier D, Marten A, Samuelson R (1991) Titan’s atmosphere from voyager infrared observations: III Vertical distributions of hydrocarbons and nitriles near Titan’s North Pole. Icarus 89:152

    Article  CAS  Google Scholar 

  11. Laufer AH (1981) Rate constants with methane, ethane, and ethane-d6. J Phys Chem 85:3828

    Article  CAS  Google Scholar 

  12. Lander D, Glass UKG, G P and Curl R, (1990) Rate constant measurements of ethynyl radical with methane, ethane, ethylene, deuterium, and carbon monoxide. J Phys Chem 94:7759

    Article  CAS  Google Scholar 

  13. Ceursters B, Nguyen HMT, Nguyen MT, Peeters J, Vereecken L (2001) The reaction of C2H radicals with C2H6: absolute rate coefficient measurements for T = 295–800 K, and quantum chemical study of the molecular mechanism. Phys Chem Chem Phys 3:3070

    Article  CAS  Google Scholar 

  14. Opansky BJ, Leone SR (1996) Rate coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K. J Phys Chem 100:19904

    Article  CAS  Google Scholar 

  15. Bowman MC, Burke AD, Turney JM, Schaefer HF III (2020) Conclusive determination of ethynyl radical hydrogen abstraction energetics and kinetics Mol. Phys. https://doi.org/10.1080/00268976.2020.1769214

    Article  Google Scholar 

  16. Hoobler RJ, Opansky BJ, Leone SR (1997) Rate coefficients for reactions of ethynyl radical (C2H) with propane, isobutane, n-butane, and neopentane. J Phys Chem A 101:1338

    Article  CAS  Google Scholar 

  17. Nizamov B, Leone SR (2004) Reactions with hydrocarbons and nitriles in the 104–296 k temperature range. J Phys Chem A 108:1746

    Article  CAS  Google Scholar 

  18. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D 2010 Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, CT

  19. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06 functionals and twelve other functionals. Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  20. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry acc. Chem Res 41:157

    Article  CAS  Google Scholar 

  21. Tondro T, Roohi H (2020) Substituent effects on the halogen and pnictogen bonds characteristics in ternary complexes 4-YPhNH2·PH2F·ClX (Y = H, F, CN, CHO, NH2, CH3, NO2 and OCH3, and X = F, OH, CN, NC, FCC and NO2): a theoretical study. J Chem Sci 132:18

    Article  Google Scholar 

  22. Xie J, Shi H, Shen C, Huan L, He M, Chen M (2021) Heteroatom-bridged pillar[4]quinone: evolutionary active cathode material for lithium-ion battery using density functional theory. J Chem Sci 133:2

    Article  CAS  Google Scholar 

  23. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y- Y, Fast P L, Hu W-P, Y. Liu P, Lynch G C, Nguyen K A, Jackels C F, Ramos A F, Ellingson B A, Melissas V S, Villà J, Rossi I, Coitiño E L, Pu J, Albu T V, Steckler R, Garrett B C, Isaacson A D and Truhlar D G (2009) POLYRATE, version 2008. University of Minnesota, Minneapolis

    Google Scholar 

  24. Zheng J, Zhang S, Corchado JC, Chuang Y-Y, Coitiño EL, Ellingson BA, Truhlar DG (2010) GAUSSRATE, version 2009-A. University of Minnesota, Minneapolis, MN

    Google Scholar 

  25. Gonzalez-Lafont A, Truong TN, Truhlar DG (1991) Interpolated Variational Transitionstate Theory: Practical Methods For Estimating Variational Transitionstate Properties And Tunneling Contributions To Chemical Reaction Rates From Electronic Structure Calculations. J Chem Phys 95:8875

    Article  CAS  Google Scholar 

  26. Garrett BC, Truhlar DG (1979) Generalized transition state theory classical mechanical theory and applications to collinear reactions of hydrogen molecules. J Phys Chem 83:1052

    Article  CAS  Google Scholar 

  27. Garrett BC, Truhlar DG, GrevMagnuson RSAW (1980) Improved treatment of threshold contributions in variational transition-state theory. J Phys Chem 84:1730

    Article  CAS  Google Scholar 

  28. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Garrett BC, Steckler R, Isaacson AD, Rai SN, Hancock GC (1992) A new version of a computer program for the calculation of chemical reaction rates for polyatomics. Comput Phys Commun 71:235

    Article  CAS  Google Scholar 

  29. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene. J Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  30. Dash MR, Srinivasulu G, Rajakumar B (2015) Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms. J Phys Chem A 119:559

    Article  CAS  Google Scholar 

  31. Dash MR, Rajakumar B (2015) Abstraction and addition kinetics of C2H radical with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods. Phys Chem Chem Phys 17:3142

    Article  CAS  Google Scholar 

  32. Dash MR, Rajakumar B (2015) Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical. Mol Phys Mol Phys 113:3202

    Article  CAS  Google Scholar 

  33. Dash MR, Rajakumar B (2014) Theoretical investigations on the kinetics of p-cymene + OH reaction Chem. Phys Lett 597:75

    Article  CAS  Google Scholar 

  34. Balaganesh M, Dash MR, Rajakumar B (2014) Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms. J Phys Chem A 118:5272

    Article  CAS  Google Scholar 

  35. Dash MR, Balaganesh M, Rajakumar B (2014) Rate coefficients for the gas-phase reaction of OH radical with α-pinene: an experimental and computational study. Mol Phys 112:1495

    Article  CAS  Google Scholar 

  36. Dash MR, Rajakumar B (2013) Experimental and theoretical rate coefficients for the gas phase reaction of β-pinene with OH radical. Atmos Environ 79:161

    Article  CAS  Google Scholar 

  37. http://webbook.nist.gov DOI: https://doi.org/10.18434/T4D303

  38. Hammond GS (1955) Correlation of reaction rates. J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Donald G. Truhlar and his group for providing the POLYRATE 2008 and GAUSSRATE 2009A programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ranjan Dash.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, M.R., Muthiah, B., Mishra, S.S. et al. Kinetic insights into ethynyl radical with isobutane and neopentane. Theor Chem Acc 140, 134 (2021). https://doi.org/10.1007/s00214-021-02833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02833-x

Keywords

Navigation