Skip to main content
Log in

Benchmarking density functional theory methods for modelling cationic metal–argon complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Noble gas chemistry is fascinating because noble gases can make formal chemical bonds with metal ions, despite their closed electronic configuration. Argon–metal ion complexes are particularly interesting since their bonding is halfway between dispersion and covalent interactions. Although many metal ion–noble gas complexes have been synthesized, there are still disagreeing theoretical descriptions about their bonding, which is not yet fully understood. Accurate experimental data are important as solid reference for theoretical methodologies, but such data are currently scarce for complexes of a metal ion with noble gas atoms. We measured infrared spectra of MArn+ (n = 3–5; M = Au, Ag, Pd) complexes and used these spectra as benchmark data for different theory levels within the density functional theory formalism. Several basis sets, exchange–correlation functionals, and the inclusion of dispersion corrections were considered. The agreement between the measured spectra and the calculations strongly depends on the applied level of theory. Functionals of a higher level of complexity do not consistently provide a better agreement with the experiment; this is particularly the case for the B3LYP hybrid functional that performs worse than the PBE GGA functional. On the other hand, the inclusion of dispersion corrections and the use of a large basis sets are crucial for a good description of the interaction between M+ and argon atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan S, Jana G, Merino B, Chattaraj PK (2019) Chem Open 8:173–187

    CAS  Google Scholar 

  2. Grochala W (2007) Soc Rev 36:1632–1655

    Article  CAS  Google Scholar 

  3. Kapur S, Müller EW (1977) Surf Sci 62:610–620

    Article  CAS  Google Scholar 

  4. Pyykkö P (1995) J Am Chem Soc 117:2067–2070

    Article  Google Scholar 

  5. Read JP, Buckingham AD (1997) J Am Chem Soc 119:9010–9013

    Article  CAS  Google Scholar 

  6. Bellert D, Breckenridge WH (2002) Chem Rev 102:1595–1622

    Article  CAS  PubMed  Google Scholar 

  7. Belpassi L, Infante I, Tarantelli F, Visscher L (2008) J Am Chem Soc 1303:1048–1060

    Article  Google Scholar 

  8. Bauschlicher CW Jr, Partridge H, Langhoff SR (1990) Chem Phys Lett 165:272–276

    Article  CAS  Google Scholar 

  9. Burda JV, Runeberg N, Pyykkö P (1998) Chem Phys Lett 288:635–641

    Article  CAS  Google Scholar 

  10. Taketsugu Y, Taketsugu T, Noro T (2006) J Chem Phys 125:154308

    Article  PubMed  Google Scholar 

  11. Walker NR, Reynard LM, Gerry MCL (2002) J Mol Struct 612:109–116

    Article  CAS  Google Scholar 

  12. Zhang P, Zhao Y, Hao F, Song X, Zhang G, Wang Y (2009) J Mol Struc-Theochem 899:111–116

    Article  CAS  Google Scholar 

  13. Eliav E, Kaldor U, Ishikawa Y (1994) Phys Rev A 49:1724

    Article  CAS  PubMed  Google Scholar 

  14. Pyykkö P (1988) Chem Rev 88:563–594

    Article  Google Scholar 

  15. Pyykkö P (2004) Angew Chem Int Ed 43:4412–4456

    Article  Google Scholar 

  16. Martini P, Kranabetter L, Goulart M, Rasul B, Gatchell M, Scheier P, Echt O (2019) Phys Chem A 123:9505–9513

    Article  CAS  Google Scholar 

  17. Mahmoodi-Darian M, Martini P, Tiefenthaler L, Kočišek J, Scheier P, Echt O (2019) J Phys Chem A 123:10426–10436

    Article  CAS  PubMed  Google Scholar 

  18. Ngan VT, Janssens E, Claes P, Fielicke A, Nguyen MT, Lievens P (2015) Phys Chem Chem Phys 17:17584–17591

    Article  CAS  PubMed  Google Scholar 

  19. Shayeghi A, Johnston RL, Rayner DM, Schfer R, Fielicke A (2015) Angew Chem Int Ed 54:10675–10680

    Article  CAS  Google Scholar 

  20. Shayeghi A, Schäfer R, Rayner DM, Johnston RL, Fielicke A (2015) J Chem Phys 143:024310

    Article  CAS  PubMed  Google Scholar 

  21. Ferrari P, Hou G-L, Lushchikova OV, Calvo F, Bakker JM, Janssens E (2020) Phys Chem Chem Phys 22:11572–11577

    Article  CAS  PubMed  Google Scholar 

  22. van der Tol J, Jia D, Li Y, Chernyy V, Bakker JM, Nguyen MT, Lievens P, Janssens E (2017) Phys Chem Chem Phys 19:19360–19368

    Article  PubMed  Google Scholar 

  23. Lushchikova OV, Huitema DMM, López-Tarifa P, Visscher L, Jamshidi Z, Bakker JM (2019) J Phys Chem Lett 10:2151–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghiringhelli LM, Levchenko SV (2015) Inorg Chem Commun 55:153–156

    Article  CAS  Google Scholar 

  25. Goldsmith BR, Florian J, Liu J-X, Gruene P, Lyon JT, Rayner DM, Fielicke A, Scheffler M, Ghiringhelli LM (2019) Phys Rev Mater 3:016002

    Article  CAS  Google Scholar 

  26. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674–676

    Article  CAS  PubMed  Google Scholar 

  27. Ghiringhelli LM, Gruene P, Lyon JT, Rayner DM, Meijer G, Fielicke A, Scheffler M (2013) New J Phys 15:083003

    Article  CAS  Google Scholar 

  28. Mancera LA, Benoit DM (2013) Phys Chem Chem Phys 15:1929

    Article  CAS  PubMed  Google Scholar 

  29. Pan S, Saha R, Mandal S, Chattaraj PK (2016) Phys Chem Chem Phys 18:11661–11676

    Article  CAS  PubMed  Google Scholar 

  30. Jamshidi Z, Eskandari K, Azami SM (2013) Int J Quantum Chem 113:1981–1991

    Article  CAS  Google Scholar 

  31. Grabowski SJ, Ugalde JM, Andrada DM, Frenking G (2016) Chem Eur J 22:11317–11328

    Article  CAS  PubMed  Google Scholar 

  32. Zeng T, Klobukowski M (2008) J Phys Chem A 112:5236–5242

    Article  CAS  PubMed  Google Scholar 

  33. Yousef A, Shrestha S, Viehland LA, Lee EP, Gray BR, Ayles VL, Wright TG, Breckenridge WH (2007) J Chem Phys 127:154309

    Article  PubMed  Google Scholar 

  34. Lang SM, Claes P, Cuong NT, Nguyen MT, Lievens P, Janssens E (2011) J Chem Phys 135:224305

    Article  PubMed  Google Scholar 

  35. Ferrari P, Vanbuel J, Li Y, Li T, Janssens E, Lievens P (2017) Modifications of gas aggregation sources: the double laser ablation source approach. In: Gas aggregation synthesis of nanoparticles. Weinheim, Wiley-VCH, pp 57–78

  36. Fielicke A, Kirilyuk A, Ratsch C, Behler J, Scheffler M, von Helden G, Meijer G (2004) Phys Rev Lett 93:023401

    Article  PubMed  Google Scholar 

  37. Bakker JM, Lapoutre VJF, Redlich B, Oomens J, Sartakov BG, Fielicke A, von Helden G, Meijer G, van der Meer AFG (2010) J Chem Phys 132:074305

    Article  PubMed  Google Scholar 

  38. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 1181:1477

    Article  Google Scholar 

  39. Perdew JP, Ruzsinszky A, Tao J (2005) J Chem Phys 123:062201

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  41. Tao J, Perdew JP, Staroverov V, Scuseria GE (2003) Phys. Rev. Lett. 91:146401

    Article  PubMed  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  PubMed  Google Scholar 

  44. Goerigk L, Grimme S (2014) WIREs Comput Mol Sci 4:576–600

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  46. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  47. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  48. Mardirossian N, Head-Gordon M (2017) Mol Phys 115:2315–2372

    Article  CAS  Google Scholar 

  49. Neese F (2012) Rev Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  50. Jamshidi Z, Lushchikova OV, Bakker JM, Visscher L (2020) J Phys Chem A 124:9004–9010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grimme S (2011) WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  52. Raghavachari K (2000) Theor Chem Acc 103:361–363

    Article  CAS  Google Scholar 

  53. Li X-Y, Cao X, Zhao Y (2009) J Phys B At Mol Opt Phys 42:065106

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the KU Leuven Research Council (Project C14/18/073) and by the CALIPSOplus project, under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. LDC is supported by King's College London through the NMS Faculty Studentship Scheme. PF acknowledges the Research Foundation—Flanders (FWO) for a postdoctoral grant. The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme; in particular, the authors gratefully acknowledges the support of the Physics Department at King’s College London and the computer resources and technical support provided by EPCC at The University of Edinburgh. We thank the financial support offered by the Royal Society (No. RG 120207) via the membership of the UK's HEC Materials Chemistry Consortium, which is funded by the EPSRC (EP/L000202). We are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1). This work used the ARCHER UK National Supercomputing Service. We gratefully acknowledge the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for the support of the FELIX Laboratory and thank the FELIX staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Janssens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Callico, L., Ferrari, P., Bakker, J.M. et al. Benchmarking density functional theory methods for modelling cationic metal–argon complexes. Theor Chem Acc 140, 38 (2021). https://doi.org/10.1007/s00214-021-02734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02734-z

Keywords

Navigation