Skip to main content

Advertisement

Log in

Structure, stability and bonding features of AlnSim clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Al–Si alloys have excellent properties for building engine blocks, and their microstructures have important effect on the performance. Investigations on the electronic structures of Al–Si clusters help to understand the microstructural evolution and improve the properties of the alloys. This paper studies the geometric structures, stabilities and bonding features of AlnSim (n,m = 2,4,6 and n + m = 8,10,12) clusters by using genetic algorithm combined with density functional theory and QCISD models. The results show there are a lot of isomers with close energies, and the geometric structures suggest no obvious Al–Si segregation. The electronic structures of the Al–Si clusters are similar to the metal clusters; the density of states of the aluminum-rich clusters agrees with the jellium shells. Doping silicon enhances the stabilities of the aluminum clusters significantly; the binding energies increase considerably with the Si/Al ratios. The bonding features and energetics demonstrate the Si–Si and Si–Al interactions are much stronger than the Al–Al interaction. As the dispersion of Si atoms will form more Si–Al bonds, it suggests the silicon atoms can form highly dispersed states in the hypoeutectic and eutectic alloys (≤ 12.6% Si).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmid G, Fenske D (2010) Metal clusters and nanoparticles. Phil Trans R Soc A 368:1207–1210

    CAS  PubMed  Google Scholar 

  2. Kim J, Dick JE, Bard AJ (2016) Advanced electrochemistry of individual metal clusters electrodeposited atom by atom to nanometer by nanometer. Acc Chem Res 49:2587–2596

    CAS  PubMed  Google Scholar 

  3. Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52:818–824

    CAS  Google Scholar 

  4. Bergeron DE, Castleman AW, Tsuguo M, Shiv NK (2004) Formation of Al13I: evidence for the superhalogen character of Al13. Science 304:84–87

    CAS  PubMed  Google Scholar 

  5. Knight WD, Clemenger K, De Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Electronic shell structure and abundances of sodium clusters. Phys Rev Lett 52:2141–2143

    CAS  Google Scholar 

  6. Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:677–732

    CAS  Google Scholar 

  7. De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–675

    Google Scholar 

  8. Ahlrichs R, Elliott SD (1999) Clusters of aluminium, a density functional study. Phys Chem Chem Phys 1:13–21

    CAS  Google Scholar 

  9. Aguado A, Lopez JM (2009) Structures and stabilities of Aln+, Aln, and Aln (n=13-34) clusters. J Chem Phys 130:064704

    PubMed  Google Scholar 

  10. Paranthaman S, Hong K, Kim J, Kim DE, Kim TK (2013) Density functional theory assessment of molecular structures and energies of neutral and anionic Aln (n=2-10) clusters. J Phys Chem A 17:9293–9303

    Google Scholar 

  11. Neal CM, Starace AK, Jarrold MF (2007) Melting transitions in aluminum clusters: the role of partially melted intermediates. Phys Rev B 76:054113

    Google Scholar 

  12. Breaux GA, Neal CM, Cao B, Jarrold MF (2005) Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys Rev Lett 94:173401

    PubMed  Google Scholar 

  13. Noya EG, Doye JPK, Calvo F (2006) Theoretical study of the melting of aluminum clusters. Phys Rev B 73:125407

    Google Scholar 

  14. Moore CE (1971) Atomic energy levels, Natl. Bur. Stand. In: US Circ U.S GPO Washington D.C, vol 1, pp 1–309

  15. De Heer WA, Milani P, Chatelain A (1989) Nonjellium-to-jellium transition in aluminum cluster polarizabilities. Phys Rev Lett 63:2834–2836

    PubMed  Google Scholar 

  16. Schriver KE, Persson JL, Honea EC, Whetten RL (1990) Electronic shell structure of group-IIIA metal atomic clusters. Phys Rev Lett 64:2539–2541

    CAS  PubMed  Google Scholar 

  17. Li X, Wu H, Wang XB, Wang LS (1998) S-p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopy study. Phys Rev Lett 81:1909–1912

    CAS  Google Scholar 

  18. Akola J, Häkkinen H, Manninen M (1998) Ionization potential of aluminum clusters. Phys Rev B 58:3601–3604

    CAS  Google Scholar 

  19. Rao BK, Jena P (1999) Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J Chem Phys 111:1890

    CAS  Google Scholar 

  20. Ye H (2003) An overview of the development of Al-Si-alloy based material for engine applications. J Mater Eng Perform 12:288–297

    CAS  Google Scholar 

  21. Wu FF, Li ST, Zhang GA, Jiang F (2014) Microstructural evolution and mechanical properties of hypereutectic Al-Si alloy processed by liquid die forging. Bull Mater Sci 37:1153–1157

    CAS  Google Scholar 

  22. Gong XG, Kumar V (1993) Enhanced stability of magic clusters: a case study of icosahedral Al12X, X =B, Al, Ga, C, Si, Ge, Ti, As. Phys Rev Lett 70:2078–2081

    CAS  PubMed  Google Scholar 

  23. Akutsu M, Kouasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A (2006) Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts. J Phys Chem A 110:12073–12076

    CAS  PubMed  Google Scholar 

  24. Kumar V, Sundararajan V (1998) Ab initio molecular-dynamics studies of doped magic clusters and their interaction with atoms. Phys Rev B 57:4939–4942

    CAS  Google Scholar 

  25. Majumder C, Kulshreshtha SK (2004) Influence of Al substitution on the atomic and electronic structure of Si clusters by density functional theory and molecular dynamics simulations. Phys Rev B 69:115432

    Google Scholar 

  26. Nigam S, Majumder C, Kulshreshtha SK (2004) Structural and electronic properties of Sin, Sin+, and AlSin-1 (n=2–13) clusters: theoretical investigation based on ab initio molecular orbital theory. J Chem Phys 121:7756–7763

    CAS  PubMed  Google Scholar 

  27. Li B, Wang G, Ye M, Yang G, Yao C (2007) Geometric and energetic properties of Al-doped Sin (n = 2–21) clusters: fp-lmto-md calculations. J Mol Struct Theochem 820:128–140

    CAS  Google Scholar 

  28. Ding WF, Li BX (2009) A first-principles study of AlnSim-n clusters (m = 6, 9, 10; n ≤ m). J Mol Struct Theochem 897:129–138

    CAS  Google Scholar 

  29. Chacko S, Deshpande M, Kanhere DG (2001) Structural and electronic properties of aluminum-based binary clusters. Phys Rev B 64:155409

    Google Scholar 

  30. Arab A, Habibzadeh M (2016) Theoretical study of geometry, stability and properties of Al and AlSi nanoclusters. J Nanostruct Chem 6:111–119

    CAS  Google Scholar 

  31. Arab A, Habibzadeh M (2015) Comparative hydrogen adsorption on the pure Al and mixed Al-Si nanoclusters: A first principle DFT study. Comput Theor Chem 1068:52–56

    CAS  Google Scholar 

  32. Tam NM, Tai TB, Ngan VT, Nguyen MT (2013) Structure, thermochemical properties, and growth sequence of aluminum-doped silicon clusters SinAlm (n=1-11, m=1-2) and their anions. J Phys Chem A 117:6867–6882

    PubMed  Google Scholar 

  33. Zhao J, Huang X, Shi R, Tang L, Su Y, Sai L (2016) Ab initio global optimization of clusters. Chem Modell 12:249–292

    CAS  Google Scholar 

  34. Johnston RL (2003) Evolving better nanoparticles: genetic algorithms for optimizing cluster geometries. Dalton Trans 22:4193–4207

    Google Scholar 

  35. Delley B (2000) From molecules to solids with the dmol3 approach. J Chem Phys 113:7756–7764

    CAS  Google Scholar 

  36. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    CAS  Google Scholar 

  37. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  38. Pople JA, Gordon MH, Raghavachari K (1987) Quadratic configuration interaction. a general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    CAS  Google Scholar 

  39. Pino I, Kroes GJ, Hemert MC (2010) Hydrogen dissociation on small aluminum clusters. J Chem Phys 133:184304–184312

    CAS  PubMed  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09. Revision D.01Gaussian Inc, Wallingford CT

  41. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Google Scholar 

  42. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    CAS  Google Scholar 

  43. Reed AE, Weinstockand RB, Wenihold F (1985) Natural population analysis. J Chem Phys 83:735–746

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (NSFC) (no. 11664034). We appreciate Jijun Zhao for offering the GA code. We also thank National Supercomputer Centre in Guangzhou and Shenzhen for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahma, O.M., Chen, H. Structure, stability and bonding features of AlnSim clusters. Theor Chem Acc 139, 103 (2020). https://doi.org/10.1007/s00214-020-02616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02616-w

Keywords

Navigation