Skip to main content

Advertisement

Log in

De glaciēbus or deductive molecular mechanics of ice polymorphs

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Yet in 1960s Del Re with coworkers considered the electronic structure of organic molecules using hybrid orbitals. They studied the simplest molecules: CH4, NH3, H2O, and more complex ones: cyclopropane, cyclobutane, cubane, using either the optimal overlap or maximal localization principles to determine the hybrids. Later Malrieu with coworkers used hybrid orbitals in the PCILO method. Later, we determined either the form and orientation of the hybrid orbitals or two-electron functions of the two-center bonds constructed on the basis of these hybrids from the minimum condition for total electronic energy as implemented in the SLG method. This gave us significant improvement in the efficiency: the dependence of the required computational resources on the molecule size reduces down to O(N). The paradigm based on the usage of the variation principle for determination of either the hybrid orbitals or the elements of the reduced density matrices in their basis allows one to formulate and prove exact statements about electronic structure. We start from establishing the energy expression for highly symmetric non-molecular ice X and prove mathematically the stability of this polymorph above a critical pressure. Below it, we derive the pressure dependence of the interaction energy of the effective dipoles emerging in the system when the symmetric layout of the hydrogen atoms, specific for ice X, breaks down. This reproduces semiquantitatively the characteristic and unusual (as compared to the others—practically vertical) form of the boundary between the areas of the ordered and disordered ice VIII and VII. We also discuss the possibility of describing the differences between the ice phases existing at lower pressures (down to normal) by including the long-range electrostatic contributions: charge-charge and dipole-dipole in the crystal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The densities (and thus molar volumes V) of the ordered and disordered phases in the pairs shown in Table 1 almost coincide [1] and thus do not contribute to the transition temperature.

  2. We subtract twice the products of the 1-RDM’s \(2P_{h}P_{l}\) and \(2P_{h}P_{s}\) form Eq. (15) and include them into classical two-center Coulomb interactions of charge distributions residing on the corresponding atoms.

  3. This applies to the crystals where R is the only independent geometry variable. For more complex situations see below.

  4. Actually, it goes about the existence of a minimum of a function being a sum of a component monotonously decreasing which diverges in the coordinate origin, and thus, its first derivative as a function of R takes once all values in the interval \(\left( -\infty ,0\right)\) and of a monotonously increasing non-divergent component whose first derivative takes values in the interval \(\left( 0,A\right) ,A>0\). Thus, there is a point R where the derivatives have opposite values and the derivative of the sum vanishes and the function itself has an extremum.

  5. This is easy to understand: ice Ic and ice X are formed by the same H bond networks; however, in ice X there are two such networks interpenetrating each other without being chemically bound (that is atoms of one network are located in the voids of another and vice versa) [1].

  6. One cannot expect that such a simple model yields numerically correct estimates of the transition pressures. However, we stress that the obtained orders of magnitude of several hundredths of GPa are correct ones.

  7. Two Greek words are oxygonōn (Gen. Plur. of oxygono—Greek for oxygen) and oxymoron both derived from \({\mathrm{o}}{\upxi }{\acute{\upupsilon }}{\varsigma}\): sharp, acidic.

  8. Mathematical truths established about its sharp concepts are believed to be immutable again as a counterposition to those of chemistry.

References

  1. Malenkov G (2009) J Phys Condes Mater 21:283101

    Article  Google Scholar 

  2. Casassa S, Calatayud M, Doll K, Minot C, Pisani C (2005) Chem Phys Lett 409:110–117

    Article  CAS  Google Scholar 

  3. Lekner J (1997) Physica B 240:263–272

    Article  CAS  Google Scholar 

  4. Lekner J (1998) Physica B 252:149–159

    Article  CAS  Google Scholar 

  5. Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, London

    Google Scholar 

  6. Petrenko VF, Whitworth RW (2002) The physics of ice. Oxford University Press, New York

    Book  Google Scholar 

  7. From Martin Chaplin’s http://www1.lsbu.ac.uk/water/ Consulted on 16.04.2018. The diagram is derived from Lyapin AG, Stal’gorova OV, Gromnitskaya EL, Brazhkin VV (2002) J Exp Theor Phys 94:283–292 (Zh Éksp Teor Fiz (2002) 121:335–346 [in Russian]). Although further precision and refinement of the diagram can be expected, the general picture is rather stable (see [1,2,5,13,27,30])

  8. Pauling L (1935) J Am Chem Soc 57:2680–2684

    Article  CAS  Google Scholar 

  9. Bernal JD, Fowler RH (1933) J Chem Phys 1:515

    Article  CAS  Google Scholar 

  10. Coulson CA (1960) Rev Mod Phys 32:170

    Article  CAS  Google Scholar 

  11. Gillan MJ, Alfè D, Michaelides (2016) J Chem Phys 144:130901

  12. Tchougréeff AL (2003) J Mol Struct THEOCHEM 630:243–263

    Article  Google Scholar 

  13. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York

    Google Scholar 

  14. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  15. Strukov BI, Levanyuk AP (1983) Physical basis of ferroelectric phenomena in crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  16. Luttinger JM, Tisza L (1946) Phys Rev 70:954

    Article  CAS  Google Scholar 

  17. Pimentel CG (1951) J Chem Phys 19:446

    Article  CAS  Google Scholar 

  18. Hach RJ, Rundle RE (1951) J Am Chem Soc 73:4321

    Article  CAS  Google Scholar 

  19. Mayer I (1989) J Mol Struct 186:43–52

    Article  Google Scholar 

  20. Duncan ABF, Pople JA (1953) Trans Faraday Soc 49:217–224

    Article  CAS  Google Scholar 

  21. Hemley RJ, Jephcoat AP, Mao HK, Zha CS, Finger LW, Cox DE (1987) Nature 330:737–740

    Article  CAS  Google Scholar 

  22. Tchougréeff AL, Tokmachev AM, Dronskowski R (2010) Chem Phys Chem 11:384–388

    Article  Google Scholar 

  23. Schuster P (1970) Theor Chim Acta 19:212–224

    Article  CAS  Google Scholar 

  24. Bent HA (1961) Chem Rev 61:275

    Article  CAS  Google Scholar 

  25. Tokmachev AM, Tchougréeff AL (2005) J Phys Chem A 109:7613–7620

    Article  CAS  Google Scholar 

  26. Coulson CA, Eisenberg D (1966) Proc R Soc Lond A 291:445–453

    Article  CAS  Google Scholar 

  27. Coulson CA, Eisenberg D (1966) Proc R Soc Lond A 291:454–459

    Article  CAS  Google Scholar 

  28. Abascal JLF, Vega C (2007) Phys Chem Chem Phys 9:2775–2778

    Article  CAS  Google Scholar 

  29. Kaplan IG, Rodimova OB (1978) Sov Phys Usp 21:918–943

    Article  Google Scholar 

  30. Marqués M, Ackland GJ, Loveday JS (2009) High Press Res 29:208–211

    Article  Google Scholar 

  31. Pruzan Ph, Chervin JC, Canny B (1993) J Chem Phys 99:9842–9846

    Article  CAS  Google Scholar 

  32. Antsyshkin DV, Dunaeva AN, Kuskov OL (2010) Geochem Int 48:633–642

    Article  Google Scholar 

  33. Lombardi E, Jansen L (1966) Phys Rev 151:694–709

    Article  CAS  Google Scholar 

  34. Tchougréeff AL (2017) AIP Conf Proc 1906:030004

    Article  Google Scholar 

  35. Deringer VL, Tchougréeff AL, Dronskowski R (2011) J Phys Chem A 115:5461–5466

    Article  CAS  Google Scholar 

  36. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2013) J Comput Chem 34:2557–2567

    Article  CAS  Google Scholar 

  37. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2016) J Comput Chem 37:1030–1035

    Article  CAS  Google Scholar 

  38. Weyl H (2009) Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton

    Google Scholar 

  39. Tchougréeff AL, Dronskowski R (2016) Mol Phys 114(7–8):1423–1444

    Article  Google Scholar 

  40. Shaik S, Rzepa HS, Hoffmann R (2013) Angew Chem Int Ed 52:3020–3033

    Article  CAS  Google Scholar 

  41. Ayers PL, Boyd RJ, Bultinck P, Caffarel M, Carbó-Dorca R, Causá M, Cioslowski J, Contreras-Garcia J, Cooper DL, Coppens P, Gatti C, Grabowsky S, Lazzeretti P, Macchi P, Pendás AM, Popelier PLA, Ruedenberg K, Rzepa H, Savin A, Sax A, Schwarz WHE, Shahbazian S, Silvi B, Solà M, Tsirelson V (2015) Comput Theor Chem 1053:2

    Article  CAS  Google Scholar 

  42. Tchougréeff AL (2016) Int J Quantum Chem 116:137–160

    Article  Google Scholar 

  43. Dirac PAM (1929) Proc R Soc Lond 123:714

    Article  CAS  Google Scholar 

  44. de Ockham G (1322–24) Expositio in libros Physicorum Aristotelis. Prologus. ...dicendum est, quod scientia vel est quedam qualitas existens subjective in anima, vel est collectio aliquarum talium qualitatum animam informantium. Et loquor tantum de scientia hominis (“...it needs to be said that knowledge is a quality existing subjectively in a soul, or a collection of such qualities shaping souls. It is going now about human knowledge”)

  45. Mulliken RS (1965) J Chem Phys 43:S2

    Article  Google Scholar 

  46. Rényi A (1966) Dialógusok a matematikáról. Akadémiai Kiadó, Budapest [Dialogues on Mathematics. Holden Day Inc. 1967] http://socratic-method.blogspot.de/2010/03/socratic-dialogue-on-mathematics-by.html

  47. Tutubalin VN (1992) Theory of probability and stochastic processes. Basics of mathematical apparatus and applied aspects. MSU Publishers, Moscow (in Russian)

    Google Scholar 

  48. Kvasnikov IA (2016) Thermodynamics and statistical physics, vol 2. Theory of equilibrium systems: statistical physics. URSS, Moscow (in Russian)

  49. Malenkov GG (2016) Ж Структ Хим 57(4):831–842

  50. Salahub DR, Sandorfy C (1971) Theor Chim Acta (Berl) 20:227

    Article  CAS  Google Scholar 

  51. Salahub DR, Sandorfy C (1971) ibid 22:325

  52. Salahub DR, Sandorfy C (1971) ibid 22: 330

  53. Salahub DR, Sandorfy C (1971) Chem Phys Lett 8:71

    Article  CAS  Google Scholar 

  54. Sichel JM, Whitehead MA (1968) Theor Chim Acta (Berl) 11:220

    Article  CAS  Google Scholar 

  55. Sichel JM, Whitehead MA (1968) ibid 11:239

  56. Sichel JM, Whitehead MA (1967) ibid 7:32

  57. Sichel JM, Whitehead MA (1968) ibid 11:254

  58. Höjer G, Meza S (1972) Acta Chem Scand 26:3723

    Article  Google Scholar 

  59. Roothaan CCJ (1951) J Chem Phys 19:1445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in the frame of joint trilateral German–Russian–Ukrainian projects by the Volkswagenstiftung Grant No. 151110. Valuable discussions with Prof. G.G. Malenkov (Moscow), Prof. I.V. Abarenkov (St. Petersburg), and Prof. M.V. Kirov (Tyumen) are gratefully acknowledged. The author is thankful to the Referees for their benevolent comments and to Dr. Peter Reinhardt of Université Paris-Sorbonne (Jussieu) for his friendly help during the XLIII Congrès des Chimistes Théoriciens d’Expression Latine in Paris, in July 2017. Mr M. Rudenko is acknowledged for drawing author's attention to the quotation Ref. [48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei L. Tchougréeff.

Additional information

Published as part of the special collection of articles “CHITEL 2017—Paris—France”.

Appendix: Parameterization

Appendix: Parameterization

The most ridiculous part of this story is the parameterization. It used to be a common place to complain about numerous parameters characteristic for semiempirical theories. Our days it is considered to be acceptable to upload a ca. 500 kB file of parameters not having whatever physical sense per atom within a PAW/DFT procedure and to call this ab initio.

Nevertheless, we find even the number of parameters required by the standard CNDO setting to be excessive for analytical treatment. Thus, we extended the procedure Ref. [39] and express required parameters through the Slater orbital exponents characteristic for atoms O and H: \(\zeta _{\mathrm{H}}=1;\,\zeta _{\mathrm{O}}=2.275\) [13]. For the atomic parameters, the following exact expressions are used

$$\begin{aligned}&h=\frac{5}{8}\zeta _{\mathrm{H}};\,H=\frac{1}{2}\zeta _{\mathrm{H}};\,G=\frac{93}{256}\zeta _{\mathrm{O}};\\&U=3\zeta _{\mathrm{O}}-\frac{5}{12}\zeta _{\mathrm{O}}^{2};\\&W=U_{ss}-U_{pp}=\frac{1}{3}\zeta _{\mathrm{O}}^{2};\\&\beta =\frac{1}{2}\left( G+h\right) . \end{aligned}$$

which produce the “theoretical” values given in Table 2. Corresponding “experimental” values are extracted from different parameterization schemes previously developed for the CNDO approximation [50,51,52,53,54,55,56,57,58] to comply with experiment. In case of W, some scaling is obviously necessary (factor of ca. 0.3), but it is understandable due to the absence of the radial node in the 2s-Slater AO. The overestimate of U with respect to “ experimental” values is compensated by the respective overestimate of G and h which non-trivially enter only together.

Table 2 Comparison of “theoretical” and “experimental” CNDO parameters used (eV)

One-electron resonance integrals \(t_{\sigma \sigma },t_{\zeta \sigma }\) are expressed as \(t_{\mu \nu }=\beta S_{\mu \nu }\), where \(S_{\mu \nu }\) is the corresponding overlap integral between the relevant Slater AOs.

For the two-center Coulomb repulsion integrals \(\gamma _{\mathrm {AB}}\) the exact formulae [59] are employed which guarantees the “Yukawa-like” exponential decay of the core-core repulsion \(Y_{\mathrm {AB}}\).

Finally, the value of G is scaled by the factor of 0.9151 to get the critical pressure exactly at 61 GPa. This, of course, does not affect the qualitative picture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchougréeff, A.L. De glaciēbus or deductive molecular mechanics of ice polymorphs. Theor Chem Acc 137, 138 (2018). https://doi.org/10.1007/s00214-018-2322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2322-0

Keywords

Navigation