Skip to main content
Log in

Electronic structure and rearrangements of anionic [ClMg(η2-O2C)] and [ClMg(η2-CO2)] complexes: a quantum chemical topology study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure and rearrangements of anionic [ClMg(η2-O2C)] and [ClMg(η2-CO2)] complexes have been elucidated by the combined use of bonding evolution theory, quantum theory of atoms in molecules, and non-covalent interaction index. The results obtained from this quantum chemical topological study allow identifying the evolution of strong and weak interactions among Mg, O, and C atoms, as well as the origin of the preference of the system for a determined reaction pathway, recovering the electron flow and bonding patterns along the reaction pathways connecting these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639. doi:10.1002/anie.200462121

    Article  CAS  Google Scholar 

  2. Webb JR, Bolano T, Gunnoe TB (2011) Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. Chemsuschem 4(1):37–49. doi:10.1002/cssc.201000319

    Article  CAS  Google Scholar 

  3. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727. doi:10.1039/c1cs15008a

    Article  CAS  Google Scholar 

  4. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kuehn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50(37):8510–8537. doi:10.1002/anie.201102010

    Article  CAS  Google Scholar 

  5. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52(1):104–107. doi:10.1002/anie.201204995

    Article  CAS  Google Scholar 

  6. Reddy PVL, Kim K-H, Song H (2013) Emerging green chemical technologies for the conversion of CH4 to value added products. Renew Sustain Energy Rev 24:578–585. doi:10.1016/j.rser.2013.03.035

    Article  CAS  Google Scholar 

  7. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742. doi:10.1021/cr4002758

    Article  CAS  Google Scholar 

  8. Weber JM (2014) The interaction of negative charge with carbon dioxide–insight into solvation, speciation and reductive activation from cluster studies. Int Rev Phys Chem 33(4):489–519. doi:10.1080/0144235x.2014.969554

    Article  CAS  Google Scholar 

  9. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996. doi:10.1021/cr000018s

    Article  CAS  Google Scholar 

  10. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992. doi:10.1039/b700658f

    Article  Google Scholar 

  11. Schrader B (2002) Eur Environ 12:173–184

    Article  Google Scholar 

  12. Firouzbakht M, Schlangen M, Kaupp M, Schwarz H (2016) Mechanistic aspects of CO2 activation mediated by phenyl yttrium cation: a combined experimental/theoretical study. J Catal 343:68–74. doi:10.1016/j.jcat.2015.09.012

    Article  CAS  Google Scholar 

  13. Firouzbakht M, Rijs NJ, Gonzalez-Navarrete P, Schlangen M, Kaupp M, Schwarz H (2016) On the activation of methane and carbon dioxide by [HTaO]+ and [TaOH]+ in the gas phase: a mechanistic study. Chem Eur J 22(30):10581–10589. doi:10.1002/chem.201601339

    Article  CAS  Google Scholar 

  14. Li J, Gonzalez-Navarrete P, Schlangen M, Schwarz H (2015) Activation of methane and carbon dioxide mediated by transition-metal doped magnesium oxide clusters [MMgO]+/0/− (M = Sc–Zn). Chem Eur J 21(21):7780–7789. doi:10.1002/chem.201500715

    Article  CAS  Google Scholar 

  15. Tang S-Y, Rijs NJ, Li J, Schlangen M, Schwarz H (2015) Ligand-controlled CO2 activation mediated by cationic titanium hydride complexes, [LTiH]+ (L = Cp2, O). Chem Eur J 21(23):8483–8490. doi:10.1002/chem.201500722

    Article  CAS  Google Scholar 

  16. Schwarz H (2017) Metal-mediated activation of carbon dioxide in the gas phase: mechanistic insight derived from a combined experimental/computational approach. Coord Chem Rev 334:112–123. doi:10.1016/j.ccr.2016.03.009

    Article  CAS  Google Scholar 

  17. Rollason RJ, Plane JMC (2001) A kinetic study of the reactions of MgO with H2O, CO2 and O2: implications for magnesium chemistry in the mesosphere. Phys Chem Chem Phys 3(21):4733–4740. doi:10.1039/b105673p

    Article  CAS  Google Scholar 

  18. Schwach P, Willinger MG, Trunschke A, Schloegl R (2013) Methane coupling over magnesium oxide: how doping can work. Angew Chem Int Ed 52(43):11381–11384. doi:10.1002/anie.201305470

    Article  CAS  Google Scholar 

  19. Kwapien K, Sierka M, Doebler J, Sauer J (2010) Reactions of H2, CH4, C2H6, and C3H8 with [(MgO)n]+ clusters studied by density functional theory. Chemcatchem 2(7):819–826. doi:10.1002/cctc.201000118

    Article  CAS  Google Scholar 

  20. García V, Fernandez JJ, Ruiz W, Mondragon F, Moreno A (2009) Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catal Commun 11(4):240–246. doi:10.1016/j.catcom.2009.10.003

    Article  Google Scholar 

  21. Bouarab R, Akdim O, Auroux A, Cherifi O, Mirodatos C (2004) Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane. Appl Catal A Gen 264(2):161–168. doi:10.1016/j.apcata.2003.12.039

    Article  CAS  Google Scholar 

  22. Hu CW, Yang HQ, Wong NB, Chen YQ, Gong MC, Tian AM, Li C, Li WK (2003) Theoretical study on the mechanism of the reaction of CH4 + MgO. J Phys Chem A 107(13):2316–2323. doi:10.1021/jp021953h

    Article  CAS  Google Scholar 

  23. Nibbelke RH, Scheerova J, Decroon M, Marin GB (1995) The oxidative coupling of methane over Mg-based catalysts: a steady-state isotope transient kinetic analysis. J Catal 156(1):106–119. doi:10.1006/jcat.1995.1236

    Article  CAS  Google Scholar 

  24. Jang W-J, Jeong D-W, Shim J-O, Roh H-S, Son IH, Lee SJ (2013) H2 and CO production over a stable Ni–MgO–Ce0.8Zr0.2O2 catalyst from CO2 reforming of CH4. Int J Hydrogen Energy 38(11):4508–4512. doi:10.1016/j.ijhydene.2013.01.196

    Article  CAS  Google Scholar 

  25. Zhang J, Wang H, Dalai AK (2009) Kinetic studies of carbon dioxide reforming of methane over Ni–Co/Al–Mg–O bimetallic catalyst. Ind Eng Chem Res 48(2):677–684. doi:10.1021/ie801078p

    Article  Google Scholar 

  26. Wang HY, Ruckenstein E (2001) CO2 reforming of CH4 over Co/MgO solid solution catalysts—effect of calcination temperature and Co loading. Appl Catal A Gen 209(1–2):207–215. doi:10.1016/s0926-860x(00)00753-5

    Article  CAS  Google Scholar 

  27. Aika K, Nishiyama T (1988) Utilisation of CO2 in the oxidative coupling of methane over PbO–MgO and PbO–CaO. J Chem Soc Chem Commun 1:70–71. doi:10.1039/c39880000070

    Article  Google Scholar 

  28. Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108(1):346–354. doi:10.1021/jp0362943

    Article  CAS  Google Scholar 

  29. Ellis RJ (1979) Most abundant protein in the world. Trends Biochem Sci 4(11):241–244. doi:10.1016/0968-0004(79)90212-3

    Article  CAS  Google Scholar 

  30. Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59(7):1555–1568. doi:10.1093/jxb/ern091

    Article  CAS  Google Scholar 

  31. Grignard V (1901) Mixed organic magnesium combinations and their application to syntheses of acids, alcohols and hydrocarbons. Ann Chim Phys 24:433–490

    CAS  Google Scholar 

  32. Kwapien K, Paier J, Sauer J, Geske M, Zavyalova U, Horn R, Schwach P, Trunschke A, Schloegl R (2014) Sites for methane activation on lithium-doped magnesium oxide surfaces. Angew Chem Int Ed 53(33):8774–8778. doi:10.1002/anie.201310632

    Article  CAS  Google Scholar 

  33. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  34. Boese AD, Schneider H, Gloss AN, Weber JM (2005) The infrared spectrum of Au-CO2. J Chem Phys. doi:10.1063/1.1875114

    Google Scholar 

  35. Knurr BJ, Weber JM (2013) Solvent-mediated reduction of carbon dioxide in anionic complexes with silver atoms. J Phys Chem A 117(41):10764–10771. doi:10.1021/jp407646t

    Article  CAS  Google Scholar 

  36. Knurr BJ, Weber JM (2014) Infrared spectra and structures of anionic complexes of cobalt with carbon dioxide ligands. J Phys Chem A 118(23):4056–4062. doi:10.1021/jp503194v

    Article  CAS  Google Scholar 

  37. Yeh CS, Willey KF, Robbins DL, Pilgrim JS, Duncan MA (1993) Photodissociation spectroscopy of the Mg+–CO2 complex ant its isotopic analogs. J Chem Phys 98(3):1867–1875. doi:10.1063/1.464221

    Article  CAS  Google Scholar 

  38. Walters RS, Brinkmann NR, Schaefer HF, Duncan MA (2003) Infrared photodissociation spectroscopy of mass-selected Al+(CO2) n and Al+(CO2) n Ar clusters. J Phys Chem A 107(38):7396–7405. doi:10.1021/jp030491k

    Article  CAS  Google Scholar 

  39. Jaeger JB, Jaeger TD, Brinkmann NR, Schaefer HF, Duncan MA (2004) Infrared photodissociation spectroscopy of Si+(CO2)n and Si+(CO2)nAr complexes—evidence for unanticipated intracluster reactions. Can J Chem 82(6):934–946. doi:10.1139/v04-044

    Article  CAS  Google Scholar 

  40. Walker NR, Walters RS, Duncan MA (2004) Infrared photodissociation spectroscopy of V+(CO2) n and V+(CO2) n Ar complexes. J Chem Phys 120(21):10037–10045. doi:10.1063/1.1730217

    Article  CAS  Google Scholar 

  41. Gregoire G, Duncan MA (2002) Infrared spectroscopy to probe structure and growth dynamics in Fe+-(CO2)n clusters. J Chem Phys 117(5):2120–2130. doi:10.1063/1.1490600

    Article  CAS  Google Scholar 

  42. Walker NR, Walters RS, Grieves GA, Duncan MA (2004) Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J Chem Phys 121(21):10498–10507. doi:10.1063/1.1806821

    Article  CAS  Google Scholar 

  43. Asher RL, Bellert D, Buthelezi T, Brucat PJ (1994) The CO + CO2 electrostatic complex: geometry and potential. Chem Phys Lett 227(6):623–627. doi:10.1016/0009-2614(94)00890-6

    Article  CAS  Google Scholar 

  44. Miller GBS, Esser TK, Knorke H, Gewinner S, Schoellkopf W, Heine N, Asmis KR, Uggerud E (2014) Spectroscopic identification of a bidentate binding motif in the anionic magnesium–CO2 complex ([ClMgCO2]). Angew Chem Int Ed 53(52):14407–14410. doi:10.1002/anie.201409444

    Article  CAS  Google Scholar 

  45. Popelier PLA, Bremond EAG (2009) Geometrically faithful homeomorphisms between the electron density and the bare nuclear potential. Int J Quantum Chem 109(11):2542–2553. doi:10.1002/qua.22215

    Article  CAS  Google Scholar 

  46. Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory. J Phys Chem A 101(39):7277–7282

    Article  CAS  Google Scholar 

  47. González-Navarrete P, Domingo LR, Andrés J, Berski S, Silvi B (2012) Electronic fluxes during diels-alder reactions involving 1,2-benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory. J Comput Chem 33(30):2400–2411

    Article  Google Scholar 

  48. Andres J, Berski S, Domingo LR, Gonzalez-Navarrete P (2012) Nature of the ring-closure process along the rearrangement of octa-1,3,5,7-tetraene to cycloocta-1,3,5-triene from the perspective of the electron localization function and catastrophe theory. J Comput Chem 33(7):748–756. doi:10.1002/jcc.22898

    Article  CAS  Google Scholar 

  49. Santos JC, Andres J, Aizman A, Fuentealba P, Polo V (2005) A theoretical study on the reaction mechanism for the Bergman cyclization from the perspective of the electron localization function and catastrophe theory. J Phys Chem A 109(16):3687–3693. doi:10.1021/jp0441947

    Article  CAS  Google Scholar 

  50. Polo V, Gonzalez-Navarrete P, Silvi B, Andres J (2008) An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions. Theoret Chem Acc 120(4–6):341–349. doi:10.1007/s00214-008-0427-6

    Article  CAS  Google Scholar 

  51. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  52. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  53. Thom R (1976) Structural stability and morphogenesis. W. A. Benjamin Inc., Redding

    Google Scholar 

  54. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  55. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  Google Scholar 

  56. Andres J, Berski S, Contreras-Garcia J, Gonzalez-Navarrete P (2014) Following the molecular mechanism for the NH3 + LiH → LiNH2 + H2 chemical reaction: a study based on the joint use of the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) index. J Phys Chem A 118(9):1663–1672. doi:10.1021/jp4111376

    Article  CAS  Google Scholar 

  57. Contreras-García J, Yang W, Johnson ER (2011) Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. J Phys Chem A 115(45):12983–12990

    Article  Google Scholar 

  58. Alonso M, Woller T, Martín-Martínez FJ, Contreras-García J, Geerlings P, De Proft F (2014) Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. Chem A Eur J 20(17):4845. doi:10.1002/chem.201400428

    Article  CAS  Google Scholar 

  59. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theor Comput 9(8):3263–3266

    Article  CAS  Google Scholar 

  60. Boto RA, Contreras-Garcia J, Calatayud M (2015) The role of dispersion forces in metal-supported self-assembled monolayers. Comput Theor Chem 1053:322–327. doi:10.1016/j.comptc.2014.10.015

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 RB Inc., Wallingford CT

  62. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  64. Fukui K (1970) A formulation of reaction coordinate. J Phys Chem 74(23):4161–4163. doi:10.1021/j100717a029

    Article  CAS  Google Scholar 

  65. Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14(12):363–368. doi:10.1021/ar00072a001

    Article  CAS  Google Scholar 

  66. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23(6):597–604. doi:10.1016/s0097-8485(99)00039-x

    Article  CAS  Google Scholar 

  67. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  68. Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614(1–3):3–10. doi:10.1016/s0022-2860(02)00231-4

    Article  CAS  Google Scholar 

  69. Gillet N, Chaudret R, Contreras-García J, Yang W, Silvi B, Piquemal J-P (2012) Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions. J Chem Theor Comput 8(11):3993–3997

    Article  CAS  Google Scholar 

  70. Andres J, Gracia L, Gonzalez-Navarrete P, Safont VS (2015) Chemical structure and reactivity by means of quantum chemical topology analysis. Comput Theor Chem 1053:17–30. doi:10.1016/j.comptc.2014.10.010

    Article  CAS  Google Scholar 

  71. Andrés J, González-Navarrete P, Safont VS (2014) Unraveling reaction mechanisms by means of quantum chemical topology analysis. Int J Quantum Chem 114(9):1239–1252. doi:10.1002/qua.24665

    Article  Google Scholar 

  72. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. doi:10.1002/jcc.22885

    Article  Google Scholar 

  73. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theor Comput 7(3):625–632

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Generalitat Valenciana for PrometeoII/2014/022 and ACOMP/2015/1202, and Ministerio de Economía y Competitividad (Spain) for Project CTQ2015-65207-P. J.A and V.S are also grateful to Universitat Jaume I for Project P1·1B2013-40; M.O. is grateful to Universitat Jaume I for Project P1·1B2013-58. The authors are also grateful to the Servei d’Informàtica, Universitat Jaume I, for generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Oliva.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, M., Safont, V.S., González-Navarrete, P. et al. Electronic structure and rearrangements of anionic [ClMg(η2-O2C)] and [ClMg(η2-CO2)] complexes: a quantum chemical topology study. Theor Chem Acc 136, 51 (2017). https://doi.org/10.1007/s00214-017-2082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2082-2

Keywords

Navigation