Skip to main content
Log in

Toward (car)borane-based molecular magnets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2016

Abstract

In a previous work, we reported the electronic structure of dimer diradicals composed of two S = ½ closo-carborane CB11H ·12 structural units (Theor. Chem. Acc. (2013) 132: 1329). That work has been extended here in order to describe a linear dimer, a linear and a cyclical trimer, and a tetrahedral structure of these units connected by means of a –CH2– bridge. A mapping of the resulting spin states onto a Heisenberg spin Hamiltonian is proposed for these new chains providing the evaluation of spin-exchange coupling constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coronado E, Delhaes P, Gatteschi D, Miller JS (eds) (1996) Molecular magnetism: from molecular assemblies to devices. Kluwer, Dordrecht

    Google Scholar 

  2. Datta SN, Trindle CO, Illas F (2014) Theoretical and computational aspects of magnetic organic molecules. Imperial College, London

    Book  Google Scholar 

  3. Dunbar KR (2012) Inorg Chem 51:12055

    Article  CAS  Google Scholar 

  4. Gómez-Coca S, Urtizberea A, Cremades E, Alonso PJ, Camón A, Ruiz E, Luis F (2014) Nat Commun 5:4300

    Article  Google Scholar 

  5. Rajca A, Wang Y, Boska M, Paletta JT, Olankitwanit A, Swanson MA, Mitchell DG, Eaton SS, Eaton GR, Rajca S (2012) J Am Chem Soc 134:15724

    Article  CAS  Google Scholar 

  6. Grimes RN (2011) Carboranes. Elsevier, Amsterdam

    Google Scholar 

  7. King BT, Noll BC, McKinley AJ, Michl J (1996) J Am Chem Soc 118:10902

    Article  CAS  Google Scholar 

  8. Eriksson L, Vyakaranam K, Ludvík J, Michl J (2007) J Org Chem 72:2351

    Article  CAS  Google Scholar 

  9. Oliva JM, Serrano-Andrés L, Havlas Z, Michl J (2009) J Mol Struct (Theochem) 912:13

    Article  CAS  Google Scholar 

  10. Oliva JM, Alcoba DR, Lain L, Torre A (2013) Theor Chem Acc 132:1329

    Article  Google Scholar 

  11. Oliva JM (2012) Adv Quantum Chem 64:105

    Article  CAS  Google Scholar 

  12. Neese F (2009) Coord Chem Rev 253:526

    Article  CAS  Google Scholar 

  13. Oka H, Kouno H, Tanaka H (2007) J Mater Chem 17:1209

    Article  CAS  Google Scholar 

  14. Ciofini I, Daul C (2003) Coord Chem Rev 238:187

    Article  Google Scholar 

  15. Noodleman L (1981) J Chem Phys 74:5737

    Article  CAS  Google Scholar 

  16. Noodleman L, Davidsom ER (1986) Chem Phys 109:131

    Article  Google Scholar 

  17. Alcoba DR, Lain L, Torre A, Bochicchio RC (2009) Chem Phys Lett 470:136

    Article  CAS  Google Scholar 

  18. Torre A, Alcoba DR, Lain L, Bochicchio RC (2010) J Phys Chem A 114:2344

    Article  CAS  Google Scholar 

  19. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) Chem Phys Lett 504:236

    Article  CAS  Google Scholar 

  20. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) J Chem Theory Comput 7:3560

    Article  CAS  Google Scholar 

  21. Alcoba DR, Torre A, Lain L, Oña OB, Oliva JM (2014) Int J Quantum Chem 114:952

    Article  CAS  Google Scholar 

  22. Zein S, Kalhor MP, Chibotaru LF, Chermette H (2009) J Chem Phys 131:224316

    Article  Google Scholar 

  23. Yamaguchi K, Takahara Y, Fueno T (1986) In: Smith H, Schaefer HF, Morokuma K (eds) Applied quantum chemistry. Reidel, Dordrecht

  24. Soda T, Kitagawa Y, Onishi T, Takano Y, Shigeta Y, Nagao H, Yohioka Y, Yamaguki K (2000) Chem Phys Lett 319:223

    Article  CAS  Google Scholar 

  25. Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) Chem Phys Lett 432:343

    Article  CAS  Google Scholar 

  26. Frisch MJ et al (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  27. Mathematica, Version 9.0 (2012) Wolfram Research, Inc., Champaign, IL

  28. Ciofini I, Adamo C, Barone V, Berthier G, Rassat A (2005) Chem Phys Lett 309:133

    CAS  Google Scholar 

  29. Kessler J (1976) Polarized Electrons. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the Projects CTQ2009-13652 (MICINN, Spain), i-COOP-2013 COOP20040 (Consejo Superior de Investigaciones Científicas), UBACYT 20020100100197 (Universidad de Buenos Aires, Argentina), PIP No. 11220090100061 (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina), GIU12/09 and UFI11/07 (Universidad del País Vasco, Spain). We thank the Universidad del País Vasco and the Consejo Superior de Investigaciones Científicas for allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Oliva.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, J.M., Alcoba, D.R., Oña, O.B. et al. Toward (car)borane-based molecular magnets. Theor Chem Acc 134, 9 (2015). https://doi.org/10.1007/s00214-014-1611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1611-5

Keywords

Navigation