Skip to main content
Log in

Confined two-electron systems: excited singlet and triplet S states

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Energies are reported for the first four singlet and triplet spherically symmetric states of 2e systems confined in an impenetrable sphere. All calculations used explicitly correlated Hylleraas basis sets. These calculations identify a series of level crossings and avoided crossings for Coulombic systems with a positive charge at the center of the sphere. Similar crossings do not occur for the 2e quantum dot. Configuration interaction calculations conducted in parallel provide a description of the system within the more traditional atomic orbital picture. The general shape of the energy versus confinement graphs and the locations of level crossings are shown to be consequences of scaling properties of the interparticle potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Michels A, de Boer J, Bijl A (1937) Remarks concerning molecular interaction and their influence on the polarisability. Physica 4(10):981–994. doi:10.1016/S0031-8914(37)80196-2

    Article  CAS  Google Scholar 

  2. Sabin JR, Brändas E, Cruz SA (eds.) (2009) The theory of confined quantum systems, parts I and II, adv quantum chem 57, 58. Academic Press, Amsterdam. ISBN:978-0123747648 & 978-0123750747

  3. Sen KD (ed) (2014) Electronic structure of quantum confined atoms and molecules. Springer, Switzerland. ISBN: 978-3-319-09981-8

  4. Montgomery HE, Pupyshev VI (2013) Confined helium: excited singlet and triplet states. Phys Lett A 337(40):2880–2883. doi:10.1016/j.physleta.2013.08.043

    Article  Google Scholar 

  5. Hylleraas EA (1929) Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z Phys 54(5–6):347–366. doi:10.1007/BF01375457

    Article  CAS  Google Scholar 

  6. ten Seldam CA, de Groot SR (1946) On the energy levels of a model of the compressed hydrogen atom. Physica 12(9–10):669–682. doi:10.1016/S0031-8914(46)80096-X

    Google Scholar 

  7. Pan X-Y, Sahni V, Massa L, Sen KD (2001) New expression for the expectation value integral for a confined helium atom. Theor Comput Chem 965(1):202–205. doi:10.1016/j.comptc.2011.01.044

    Article  Google Scholar 

  8. Hylleraas E, Undheim B (1930) Numerische Berechnung der 2S-Terme von Ortho-und Par-Helium. Z. Phys 65(11–12):759–772. doi:10.1007/BF01397263

    Article  CAS  Google Scholar 

  9. MacDonald JKL (1933) Successive approximations by the Rayleigh–Ritz variation method. Phys Rev 43(10):830–833. doi:10.1103/PhysRev.43.830

    Article  Google Scholar 

  10. Flügge S (1971) Practical quantum mechanics I. Springer, Berlin. ISBN 3-540-07060-8

    Book  Google Scholar 

  11. Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory 3. Pergamon, New York. ISBN 0-08-029140-6

    Google Scholar 

  12. Loos PF, Gill PMW (2012) Harmonically trapped jellium. Molec Phys 110(19–20):2337–2342. doi:10.1080/00268976.2012.679634

    Article  CAS  Google Scholar 

  13. Bielińska-Wąż D, Karwowski J, Diercksen GHF (2001) Spectra of confined two-electron atoms. J Phys B: At Mol Opt Phys 34(10):1987–2000. doi:10.1088/0953-4075/34/10/312

    Article  Google Scholar 

  14. Fernandez FM (2014) Perturbation theory for confined systems. J Math Chem 52(1):174–177. doi:10.1007/s10910-013-0252-6

    Article  CAS  Google Scholar 

  15. Jung J, Alvarellos JE (2003) Two interacting electrons confined within a sphere: an accurate solution. J Chem Phys 118(24):10825–10834. doi:10.1063/1.1574786

    Article  CAS  Google Scholar 

  16. Hill RN (1977) Proof that the H ion has only one bound state. Phys Rev Lett 38(12):643–646. doi:10.1103/PhysRevLett.38.643

    Article  CAS  Google Scholar 

  17. Slater JC (1929) The theory of complex spectra. Phys Rev 34(10):1293–1322. doi:10.1103/PhysRev.34.1293

    Article  CAS  Google Scholar 

  18. Loos PF, Gill PMW (2010) Excited states of spherium. Molec Phys 108(19–20):2527–2532. doi:10.1080/00268976.2010.508472

    Article  CAS  Google Scholar 

  19. Fernández FM, Castro EA (1987) Hypervirial theorems. Springer, Berlin, New York. ISBN 978-3540171706

    Book  Google Scholar 

  20. Kais S, Serra P (2003) Finite-size scaling for atomic and molecular systems. Adv Chem Phys 125. In: Prigogine I, Rice SA (Eds.), Wiley, Hoboken, USA, pp 1–99. doi:10.1002/0471428027.ch1

  21. Hall RL, Saad N, Sen KD (2011) Spectral characteristics for a spherically confined −a/r + br2 potential. J Phys A: Math Theor 44(18):185307. doi:10.1088/1751-8113/44/18/185307

    Article  Google Scholar 

  22. Pupyshev VI, Stepanov NF (2014) Spectroscopic characteristics of simple systems in a spherical cavity. Russ J Phys Chem A 88(11): 1882–1888 (Engl. transl.). doi:10.1134/S0036024414110132

  23. Baker JD, Freund DE, Hill RN, Morgan JD (1990) Radius of convergence and analytic behavior of the 1/Z expansion. Phys Rev A 41(3):1247–1273. doi:10.1103/PhysRevA.41.1247

    Article  CAS  Google Scholar 

  24. Cohen AJ, Mori-Sánchez P (2014) Dramatic changes in electronic structure revealed by fractionally charged nuclei. J Chem Phys 140(4):044110. doi:10.1063/1.4858461

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank K.D. Sen for stimulating our interest in large-radius, two-electron quantum dots. H.E.M thanks the Centre College Faculty Development Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Montgomery Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montgomery, H.E., Pupyshev, V.I. Confined two-electron systems: excited singlet and triplet S states. Theor Chem Acc 134, 1598 (2015). https://doi.org/10.1007/s00214-014-1598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1598-y

Keywords

Navigation