Skip to main content
Log in

The influence of the adjacent hydrogen bond on the hydroxylation processes mediated by cytochrome P450 side-chain cleavage enzyme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The conversion of cholesterol to pregnenolone is a physiologically essential process which initiates with two sequential hydroxylation processes catalyzed by cytochrome P450 side-chain cleavage enzyme (P450SCC). Extensive efforts have been exerted; however, the mechanistic details remain obscure. In this work, we employed the dispersion-corrected density functional theoretical (DFT-D) calculations to investigate the mechanistic details of such hydroxylation processes. Calculated results reveal that the active intermediate Compound I (CpdI) of P450SCC hydroxylates cholesterol efficiently, which coincides with previous spectrometric observations. The hydrogen bond effect of water molecule within the active site lowers the energy barrier significantly. Intriguingly, the adjacent hydrogen bond (H-bond) between the hydroxyl group of the substrate and the oxo group of CpdI in the second hydroxylation affects the H-abstraction significantly. Such H-bond was weakened during the C–H bond activation process, increasing the energy barriers by approximately 2 kcal/mol, which is different to the intermolecular H-bond effect of water903 found by Shaik et al. that decreases the barrier by about 4 kcal/mol. Such adjacent H-bond also affects the transition state by bending the alignment of the C–H–O moiety, and consequently lowering the kinetic isotope effect values. Besides, a series of DFT-D calculations (Grimme’s D2, D3-zero, and D3-BJ methods) were performed and accessed to find out an appropriate protocol for H-bond containing hydroxylation process. Our results show that DFT-D single-point energies (SPE) based on geometries optimized with non-dispersion-corrected DFT varies drastically and sometime presents unreasonable results. DFT-D SPE calculations on DFT-D optimized geometries present stable and reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ortiz de Montellano PR, Voss J (2005) Substrate oxidation by cytochrome P450 enzymes. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  2. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  CAS  Google Scholar 

  3. Kadish KM, Smith KM, Guilard R (2010) Handbook of porphyrin science. World Scientific, Singapore

    Google Scholar 

  4. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277

    Article  CAS  Google Scholar 

  5. Dawson JH, Sono M (1987) Chem Rev 87:1255–1276

    Article  CAS  Google Scholar 

  6. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    Article  CAS  Google Scholar 

  7. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  CAS  Google Scholar 

  8. McLean KJ, Hans M, Munro AW (2012) Biochem Soc Trans 40:587–593

    Article  CAS  Google Scholar 

  9. Lieberman S, Lin YY (2001) J Steroid Biochem Mol Biol 78:1–14

    Article  CAS  Google Scholar 

  10. Dixon R, Furutach T, Lieberma S (1970) Biochem Biophys Res Commun 40:161–165

    Article  CAS  Google Scholar 

  11. Burstein S, Middleditch BS, Gut M (1974) Biochem Biophys Res Commun 61:692–697

    Article  CAS  Google Scholar 

  12. Larroque C, Rousseau J, Vanlier JE (1981) Biochemistry 20:925–929

    Article  CAS  Google Scholar 

  13. Hume R, Kelly RW, Taylor PL, Boyd GS (1984) Eur J Biochem 140:583–591

    Article  CAS  Google Scholar 

  14. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (2011) Proc Natl Acad Sci USA 108:10139–10143

    Article  CAS  Google Scholar 

  15. Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA (2011) J Biol Chem 286:5607–5613

    Article  CAS  Google Scholar 

  16. Ormejohnson NR, Light DR, Whitestevens RW, Ormejohnson WH (1979) J Biol Chem 254:2103–2111

    CAS  Google Scholar 

  17. Lambeth JD, Kitchen SE, Farooqui AA, Tuckey R, Kamin H (1982) J Biol Chem 257:1876–1884

    CAS  Google Scholar 

  18. Davydov R, Gilep AA, Strushkevich NV, Usanov SA, Hoffman BM (2012) J Am Chem Soc 134:17149–17156

    Article  CAS  Google Scholar 

  19. Shaik S, Chen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  CAS  Google Scholar 

  20. Sharma PK, de Visser SP, Shaik S (2003) J Am Chem Soc 125:8698–8699

    Article  CAS  Google Scholar 

  21. Kumar D, de Visser SP, Shaik S (2005) J Am Chem Soc 127:8204–8213

    Article  CAS  Google Scholar 

  22. Zhang Y, Morisetti P, Kim J, Smith L, Lin H (2008) Theor Chem Acc 121:313–319

    Article  CAS  Google Scholar 

  23. Ogliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) J Am Chem Soc 122:8977–8989

    Article  CAS  Google Scholar 

  24. Wang Y, Wang HM, Wang YH, Yang CL, Yang L, Han KL (2006) J Phys Chem B 110:6154–6159

    Article  CAS  Google Scholar 

  25. Wang Y, Kumar D, Yang C, Han K, Shaik S (2007) J Phys Chem B 111:7700–7710

    Article  CAS  Google Scholar 

  26. Wang Y, Yang CL, Wang HM, Han KL, Shaik S (2007) ChemBioChem 8:277–281

    Article  CAS  Google Scholar 

  27. Wang Y, Li D, Han K, Shaik S (2010) J Phys Chem B 114:2964–2970

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Wallingford

    Google Scholar 

  29. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  31. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  34. Lonsdale R, Harvey JN, Mulholland AJ (2010) J Phys Chem Lett 1:3232–3237

    Article  CAS  Google Scholar 

  35. Hirao H (2011) J Phys Chem A 115:9308–9313

    Article  CAS  Google Scholar 

  36. Lonsdale R, Harvey JN, Mulholland AJ (2012) J Chem Theory Comput 8:4637–4645

    Article  CAS  Google Scholar 

  37. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Science 321:792–794

    Article  CAS  Google Scholar 

  38. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  39. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  40. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  42. Melander L, Saunders WH (1987) Reaction rates of isotopic molecules. RE Krieger Pub. Co., Malabar

    Google Scholar 

  43. Groves JT, McClusky GA (1976) J Am Chem Soc 98:859–861

    Article  CAS  Google Scholar 

  44. Groves JT (1985) J Chem Educ 62:928–931

    Article  CAS  Google Scholar 

  45. Shaik S, Filatov M, Schroder D, Schwarz H (1998) Chem Eur J 4:193–199

    Article  CAS  Google Scholar 

  46. Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  CAS  Google Scholar 

  47. Kamachi T, Yoshizawa K (2003) J Am Chem Soc 125:4652–4661

    Article  CAS  Google Scholar 

  48. Latifi R, Sainna MA, Rybak-Akimova EV, de Visser SP (2013) Chem Eur J 19:4058–4068

    Article  CAS  Google Scholar 

  49. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  CAS  Google Scholar 

  50. Kumar D, Latifi R, Kumar S, Rybak-Akimova EV, Sainna MA, de Visser SP (2013) Inorg Chem 52:7968–7979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural science Foundation of China (Grant Nos. 21003116, 21173211, and 11274096), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 124200510013), and Innovative Research Team in Science and Technology in University of Henan Province (Grant No. 13IRTSTHN016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufang Liu or Yong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Y. & Wang, Y. The influence of the adjacent hydrogen bond on the hydroxylation processes mediated by cytochrome P450 side-chain cleavage enzyme. Theor Chem Acc 133, 1485 (2014). https://doi.org/10.1007/s00214-014-1485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1485-6

Keywords

Navigation