Skip to main content
Log in

Parameterization of the prosthetic redox centers of the bacterial cytochrome bc 1 complex for atomistic molecular dynamics simulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Cytochrome (cyt) bc 1 is a multi-subunit membrane protein complex that is a vital component of the respiratory and photosynthetic electron transfer chains both in bacteria and eukaryotes. Although the complex’s dimer structure has been solved using X-ray crystallography, it has not yet been studied in large-scale classical molecular dynamics (MD) simulations. In part, this is due to lack of suitable force field parameters, centered atomic point charges in particular, for the complex’s prosthetic redox centers. Accurate redox center charges are needed to depict realistically the inter-molecular interactions at different redox stages of the cyt bc 1 complex. Accordingly, here we present high-precision atomic point charges for the metal centers of the cyt bc 1 complex of Rhodobacter capsulatus derived from extensive density functional theory calculations, fitted using the restrained electrostatic potential methodology and combined with the CHARMM force field parameters. We also provide the Hartree–Fock charges for all substrate forms (quinol, quinone, and semiquinone) and the inhibitors antimycin and stigmatellin of the bacterial bc 1 complex. The accuracy of the parameterization scheme was verified by running a 200-ns MD simulation encompassing the entire cyt bc 1 complex embedded in a lipid bilayer and solvated with explicit water. The results indicate that these meticulously derived parameters are ready for running extensive MD simulations encompassing all biologically relevant stages of the cyt bc 1 complex reaction cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    Article  CAS  Google Scholar 

  2. Berry EA, Huang L, Saechao LK, Pon NG, Valkova-Valchanova M, Daldal F (2004) X-Ray structure of Rhodobacter capsulatus cytochrome bc (1): comparison with its mitochondrial and chloroplast counterparts. Photosyn Res 81:251–275

    Article  CAS  Google Scholar 

  3. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossvai I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  4. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved. Proteins 65:712–725

    Article  CAS  Google Scholar 

  5. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson D, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  6. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher E III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  7. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Lachele FB, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field, Carbohydrates. J Comput Chem 29:622–655

    Article  CAS  Google Scholar 

  8. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  9. Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) Classical force field parameters for the heme prosthetic group of cytochrome c. J Comput Chem 25:1613–1622

    Article  CAS  Google Scholar 

  10. Johansson MP, Kaila VRI, Laakkonen L (2008) Charge parameterization of the metal centers in cytochrome c oxidase. J Comput Chem 29:753–767

    Article  CAS  Google Scholar 

  11. Oda A, Yamaotsu N, Hirono S (2005) New AMBER force field parameters of heme iron for cytochrome P450 s determined by quantum chemical calculations of simplified models. J Comput Chem 26:818–826

    Article  CAS  Google Scholar 

  12. Ullmann M, Noodleman L, Case D (2002) Density functional calculation of p K a values and redox potentials in the bovine rieske iron-sulfur protein. J Biol Inorg Chem 7:632–639

    Article  CAS  Google Scholar 

  13. Meuwly M, Karplus M (2004) Theoretical investigations on azotobacter vinelandii ferredoxin I: effects of electron transfer on protein dynamics. Biophys J 86:1987–2007

    Article  CAS  Google Scholar 

  14. Yachandra VK, Hare J, Gewirth A, Czernuszewicz RS, Kimura T, Holm RH, Spiro TG (1983) Resonance Raman spectra of spinach ferredoxin and adrenodoxin and of analog complexes. J Am Chem Soc 105:6462–6469

    Article  CAS  Google Scholar 

  15. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  16. Almlof J, Fischer TH, Gassman PG, Ghosh A, Haeser M (1993) Electron correlation in tetrapyrroles: ab initio calculations on porphyrin and the tautomers of chlorin. J Phys Chem 93:10964–10970

    Article  Google Scholar 

  17. Piqueras MC, Rohlfing CM (1996) Hartree-fock symmetry-breaking in magnesium and nickel porphyrins. J Mol Str THEOCHEM 388:293–297

    CAS  Google Scholar 

  18. Siegbahn PE, Blomberg MR (2000) Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem Rev 100:421–438

    Article  CAS  Google Scholar 

  19. Merchán M, Ortí E, Roos BO (1994) Ground state free base porphin: C2v or D2h symmetry? A theoretical contribution. Chem Phys Lett 221:136–144

    Article  Google Scholar 

  20. Havenith RW, Meijer AJ, Irving BJ, Fowler PW (2009) Comparison of ring currents evaluated consistently at density functional and Hartree–Fock levels. Mol Phys 107:2591–2600

    Article  CAS  Google Scholar 

  21. Tsuzuki S, Uchimaru T, Tanabe K, Yliniemela A (1996) Comparison of atomic charge distributions obtained from different procedures: basis set and electron correlation effects. J Mol Str THEOCHEM 365:81–88

    Article  CAS  Google Scholar 

  22. Mayaan E, Moser A, MacKerell AD Jr, York DM (2007) CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes. J Comput Chem 28:495–507

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2004) Gaussian 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  24. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  25. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order—N DFT method. Theor Chim Acta 99:391–403

    Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, Berlin, pp 10–11

    Google Scholar 

  30. Perdew JP, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  31. Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978

    Article  CAS  Google Scholar 

  32. Perdew J, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  33. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum press, New York, pp 81–111

    Google Scholar 

  34. Marques HM, Brown KL (2002) Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord Chem Rev 225:123–158

    Article  CAS  Google Scholar 

  35. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  36. Ryde U, Olsson MHM, Pierloot K (2001) The structure and function of blue copper proteins. In: Eriksson LA (ed) Theoretical biochemistry. Processes and properties of biological systems, Elsevier, Amsterdam, New York, pp 1–55

    Google Scholar 

  37. Szilagyi RK, Winslow MA (2006) On the accuracy of density functional theory for iron—sulfur clusters. J Comput Chem 27:1385–1397

    Article  CAS  Google Scholar 

  38. Chang CH, Kim K (2009) Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases. J Chem Theory Comput 5:1137–1145

    Article  CAS  Google Scholar 

  39. Izrailev S, Crofts AR, Berry EA, Schulten K (1999) Steered molecular dynamics simulation of the rieske subunit motion in the cytochrome bc (1) complex. Biophys J 77:1753–1768

    Article  CAS  Google Scholar 

  40. Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc 1. Nature 392:677–684

    Article  CAS  Google Scholar 

  41. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  42. Feller SE, Gawrisch K, Mackerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  CAS  Google Scholar 

  43. Feller SE, Mackerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  44. Esser L, Elberry M, Zhou F, Yu C, Yu L, Xia D (2008) Inhibitor-complexed structures of the cytochrome bc 1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283:2846–2857

    Article  CAS  Google Scholar 

  45. Pöyry S, Róg T, Karttunen M, Vattulainen I (2009) Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics. J Phys Chem B 113:15513–15521

    Article  Google Scholar 

  46. Róg T, Martinez-Seara H, Munck N, Oresic M, Karttunen M, Vattulainen I (2009) Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. J Phys Chem B 113:3413–3422

    Article  Google Scholar 

  47. Gomez B, Robinson NC (1999) Quantitative determination of cardiolipin in mitochondrial electron transferring complexes by silicic acid high-performance liquid chromatography. Anal Biochem 267:212–216

    Article  CAS  Google Scholar 

  48. Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications. Biochim Biophys Acta 1817:1937–1949

    Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  50. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  Google Scholar 

  51. Taylor J, Whiteford NE, Bradley G, Watson GW (2009) Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble. Biochim Biophys Acta 1788:638–649

    Article  CAS  Google Scholar 

  52. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  53. Grest G, Kremer K (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33:3628–3631

    Article  CAS  Google Scholar 

  54. Kaszuba K, Róg T, Bryl K, Vattulainen I, Karttunen M (2010) Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor. J Phys Chem B 114:8374–8386

    Article  CAS  Google Scholar 

  55. Lehtonen JV, Still D, Rantanen V, Ekholm J, Björklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, Pentikäinen O, Nyrönen T, Salminen T, Gyllenberg M, Johnson MS (2004) BODIL: a molecular modeling environment for structure-function analysis and drug design. J Comput Aided Mol Des 18:401–419

    Article  CAS  Google Scholar 

  56. Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  57. Merritt EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524

    Article  CAS  Google Scholar 

  58. Advanced Chemistry Development I (2012) ACD/ChemSketch. Canada, Toronto

    Google Scholar 

  59. Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T (2013) Key role of water in proton transfer at the Qo-site of the cytochrome bc 1 complex predicted by atomistic molecular dynamics simulations. Biochim Biophys Acta Biomembr 1827:761–768

    Article  CAS  Google Scholar 

  60. Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T (2013) Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc 1 complex. Biochim Biophys Acta Biomembr 1827:769–778

    Article  Google Scholar 

Download references

Acknowledgments

Computational resources were provided by the Finnish IT Centre for Science (CSC). We acknowledge that the results of this research have been in part achieved using the PRACE-2IP project (FP7 RI-283493) resource Lindgren based in Sweden at PDC. We wish to thank the Academy of Finland (TR, IV, PAP, OC), the European Research Council (CROWDED-PRO-LIPIDS), and the Finnish Doctoral Programme in Computational Sciences (KK) for financial support. AO acknowledges The Wellcome Trust International Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Róg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaszuba, K., Postila, P.A., Cramariuc, O. et al. Parameterization of the prosthetic redox centers of the bacterial cytochrome bc 1 complex for atomistic molecular dynamics simulations. Theor Chem Acc 132, 1370 (2013). https://doi.org/10.1007/s00214-013-1370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1370-8

Keywords

Navigation