Skip to main content
Log in

Theoretical analysis of charge-transfer electronic spectra of methylated benzenes—TCNE complexes including solvent effects: approaching experiment

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The paper brings new accurate theoretical description of charge-transfer (CT) electronic spectra of a complete series of methylated benzenes–tetracyanoethylene (NMB-TCNE) complexes and detail comparison with complete experimental data both in the gas phase and in polar media. It is shown that the energies of the first two (CT) absorption transition in these intermolecular EDA (electron donor–acceptor) complexes are described well by the CC2/aug-cc-pVTZ method. In agreement with experimental data, it reproduces well both the bathochromic shift of the two π(NMB) → π*(TCNE) transitions (ranging from 3.41 to 2.23 eV) with the increasing number of methyl groups N as well as the value of splitting between them. Nevertheless, the CC2 transitions are systematically smaller, that is, red-shifted, with respect to experimental quantities in the gas phase by ca. 0.15–0.2 eV, which is an inaccuracy of the CC2 approach. The TD-LC-BLYP method better describes studied CT transitions than PBE0 or B3LYP functionals; however, the transition energies are too sensitive to the fitting range separation factor μ. The PCM solvation model combined with the CIS or LC-BLYP methods predicts red solvent shifts for all the studied CT transitions in NMB-TCNE complexes due to a larger stabilization of the excited states compared to their ground states in the solvent. The stabilization increases with solvent polarity and decreases with increasing N. The CIS/PCM solvent shifts are smaller than experimental values (taken as the difference for the gas phase and the polar CH2Cl2 solvent) by 0.1–0.15 eV, that is, by 30–40 %, however, being more consistent than those obtained by TD-DFT functionals used. Experimentally interesting (hexamethylbenzene)2-TCNE complex (2:1) was also studied by the LC-BLYP approach. The exciton splitting together with the bathochromic effect on absorption in comparison with 1:1 complex was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Foster R (1969) Organic charge-transfer complexes. Academic Press, New York

    Google Scholar 

  2. McGlynn SP (1958) Chem Rev 58:1113

    Article  CAS  Google Scholar 

  3. Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New York

    Google Scholar 

  4. Dega-Szafran Z, Kania A, Nowak-Wydra B, Szafran M (1994) J Mol Struct 322:223

    Article  CAS  Google Scholar 

  5. Anelli PL, Ashton PR, Ballardini R, Balzani V, Delgado M, Gandolfi MT, Goodnow TT, Kaifer AE, Philp D (1992) J Am Chem Soc 114:193

    Article  CAS  Google Scholar 

  6. Asakawa M, Ashton PR, Boyd SE, Brown CL, Gillard RE, Kocian O, Raymo FM, Stoddart JF, Tolley MS, White AJP, Williams DJ (1997) J Org Chem 62:26

    Article  CAS  Google Scholar 

  7. Bissell RA, Cordova E, Kaifer AE, Stoddart JF (1994) Nature 369:133

    Article  CAS  Google Scholar 

  8. Cordova E, Bissell RA, Kaifer AE (1995) J Org Chem 60:1033

    Article  CAS  Google Scholar 

  9. Lokey RS, Iverson BL (1995) Nature 375:303

    Article  CAS  Google Scholar 

  10. Toki A, Yonemura H, Matsuo T (1993) Bull Chem Soc Jpn 66:3382

    Article  CAS  Google Scholar 

  11. Fox M, Chanon M (eds) (1988) Photoinduced electron transfer. Elsvier, New York

    Google Scholar 

  12. Amin AS, El-Beshbeshy AM (2001) Microchim Acta 137:63

    Article  CAS  Google Scholar 

  13. Amin AS, Ahmed IS (2001) Microchim Acta 137:35

    Article  CAS  Google Scholar 

  14. Kysel O, Juhasz G, Mach P, Kosik G (2007) Chem Pap 61:66

    Article  CAS  Google Scholar 

  15. Kysel O, Budzak S, Medved M, Mach P (2008) Int J Quantum Chem 108:1533

    Article  CAS  Google Scholar 

  16. Kysel O, Budzak S, Mach P, Medved M (2010) Int J Quantum Chem 110:1712

    CAS  Google Scholar 

  17. Stires JC, McLaurin EJ, Kubiak CP (2005) Chem Commun 41:3532

    Article  Google Scholar 

  18. Headgordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21

    Article  CAS  Google Scholar 

  19. Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409

    Article  CAS  Google Scholar 

  20. Hattig C, Weigend F (2000) J Chem Phys 113:5154

    Article  CAS  Google Scholar 

  21. Hellweg A, Grun SA, Hattig C (2008) Phys Chem Chem Phys 10:4119

    Article  CAS  Google Scholar 

  22. Goerigk L, Grimme S (2010) J Chem Phys 132:184103

    Article  Google Scholar 

  23. Rhee YM, Head-Gordon M (2007) J Phys Chem A 111:5314

    Article  CAS  Google Scholar 

  24. Schirmer J (1982) Phys Rev A 26:2395

    Article  CAS  Google Scholar 

  25. Grimme S, Neese F (2007) J Chem Phys 127:154116

    Article  Google Scholar 

  26. Aquino AJA, Nachtigallova D, Hobza P, Truhlar DG, Hattig C, Lischka H (2011) J Comp Chem 32:1217

    Article  CAS  Google Scholar 

  27. Kim HJ (1996) J Chem Phys 105:6818

    Article  CAS  Google Scholar 

  28. Kim HJ (1996) J Chem Phys 105:6833

    Article  CAS  Google Scholar 

  29. Amovilli C, Barone V, Cammi R, Cances E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Adv Quant Chem 32:227

    Article  Google Scholar 

  30. Aguilar MA, Delvalle FJO, Tomasi J (1993) J Chem Phys 98:7375

    Article  CAS  Google Scholar 

  31. Mikkelsen KV, Cesar A, Agren H, Jensen HJA (1995) J Chem Phys 103:9010

    Article  CAS  Google Scholar 

  32. Cammi R, Tomasi J (1995) Int J Quantum Chem 56:465

    Article  Google Scholar 

  33. Mennucci B, Cammi R, Tomasi J (1998) J Chem Phys 109:2798

    Article  CAS  Google Scholar 

  34. Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV (2002) J Chem Phys 117:13

    Article  CAS  Google Scholar 

  35. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) J Phys Chem 99:17311

    Article  CAS  Google Scholar 

  36. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  37. Jacquemin D, Laurent AD, Perpete EA, Andre JM (2009) Int J Quantum Chem 109:3506

    Article  CAS  Google Scholar 

  38. Weigend F, Kohn A, Hattig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  39. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  40. Tsuneda T, Kamiya M, Morinaga N, Hirao K (2001) J Chem Phys 114:6505

    Article  CAS  Google Scholar 

  41. Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943

    Article  CAS  Google Scholar 

  42. Bernasconi L, Sprik M, Hutter J (2003) J Chem Phys 119:12417

    Article  CAS  Google Scholar 

  43. Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489

    Article  CAS  Google Scholar 

  44. Tozer DJ, Handy NC (1998) J Chem Phys 109:10180

    Article  CAS  Google Scholar 

  45. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  46. Wong BM, Piacenza M, Sala FD (2009) Phys Chem Chem Phys 11:4498

    Article  CAS  Google Scholar 

  47. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226

    Article  CAS  Google Scholar 

  48. Koopmans T (1933) Physica 1:104

    Article  CAS  Google Scholar 

  49. Wv Niessen, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57

    Article  Google Scholar 

  50. Cederbaum LS, Domcke W (1977) Adv Chem Phys 36:205

    Article  CAS  Google Scholar 

  51. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  52. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 1. Gaussian. Gaussian, Inc., Wallingford, CT

  54. Rappi AK, Casewit CJ, Colwell KS, Goddard WA, Skid WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  55. Cossi M, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  56. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  57. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  58. Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  59. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427

    Article  CAS  Google Scholar 

  60. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) J Am Chem Soc 122:3746

    Article  CAS  Google Scholar 

  61. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Phys Chem A 106:4423

    Article  CAS  Google Scholar 

  62. Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790

    Article  CAS  Google Scholar 

  63. Antony J, Grimme S (2007) J Phys Chem A 111:4862

    Article  CAS  Google Scholar 

  64. Granatier J, Pitonak M, Hobza P (2012) Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers. J Chem Theory Comput. doi:10.1021/ct300215p

    Google Scholar 

  65. Cramer CJ (2002) Essentials of computational chemistry: theories and models. John Wiley, New York

    Google Scholar 

  66. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  67. Chowdhury S, Kebarle P (1986) J Am Chem Soc 108:5453

    Article  CAS  Google Scholar 

  68. Mataga N, Kaifu Y, Koizumi M (1956) Bull Chem Soc Jpn 29:465

    Article  CAS  Google Scholar 

  69. Frey JE, Andrews AM, Ankoviac DG, Beaman DN, Dupont LE, Elsner TE, Lang SR, Zwart MAO, Seagle RE, Torreano LA (1990) J Org Chem 55:606

    Article  CAS  Google Scholar 

  70. Pawlukojc A, Sawka-Dobrowolska W, Bator G, Sobczyk L, Grech E, Nowicka-Scheibe J (2006) Chem Phys 327:311

    Article  CAS  Google Scholar 

  71. Liptay W, Rehm T, Wehning D, Schanne L, Baumann W, Lang W (1982) Z Naturforsch Teil A 37:1427

    Google Scholar 

  72. Smith ML, McHale JL (1985) J Phys Chem 89:4002

    Article  CAS  Google Scholar 

  73. Zaini R, Orcutt AC, Arnold BR (1999) Photochem Photobiol 69:443

    Article  CAS  Google Scholar 

  74. Maverick E, Trueblood KN, Bekoe DA (1978) Acta Crystallogr Sec B 34:2777

    Article  Google Scholar 

  75. Hanazaki I (1972) J Phys Chem 76:1982

    Article  CAS  Google Scholar 

  76. Merrifield RE, Phillips WD (1958) J Am Chem Soc 80:2778

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Slovak Research and Development Agency (project No. APVV-0059-10) and VEGA grant No. 1/0524/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Mach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mach, P., Budzák, Š., Medveď, M. et al. Theoretical analysis of charge-transfer electronic spectra of methylated benzenes—TCNE complexes including solvent effects: approaching experiment. Theor Chem Acc 131, 1268 (2012). https://doi.org/10.1007/s00214-012-1268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1268-x

Keywords

Navigation