Skip to main content
Log in

Core correlating basis functions for elements 31–118

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Gaussian functions for correlation of all core shells of elements from Z = 31 to Z = 118 have been optimized in relativistic singles and doubles CI calculations, performed on the shell of highest angular momentum for each principal quantum number. The SCF functions were derived from the double-zeta, triple-zeta, and quadruple-zeta basis sets previously optimized by the author. Only those Gaussian functions that are not represented in the SCF basis sets were optimized. The functions are available from the Dirac program web site, http://dirac.chem.sdu.dk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  2. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6769

    Article  Google Scholar 

  3. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  4. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  5. Martin JML, Sundermann A (2001) J Chem Phys 114:3408

    Article  CAS  Google Scholar 

  6. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  7. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  8. Cao X, Dolg M (2001) J Chem Phys 115:7348

    Article  CAS  Google Scholar 

  9. Cao X, Dolg M, Stoll H (2003) J Chem Phys 118:487

    Article  CAS  Google Scholar 

  10. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Article  Google Scholar 

  11. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    Article  CAS  Google Scholar 

  12. Roos BO, Veryazov V, Widmark P-O (2003) Theor Chem Acc 111:345

    Google Scholar 

  13. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2004) J Phys Chem A 108:2851

    Article  CAS  Google Scholar 

  14. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) J Phys Chem A 109:6575

    Article  CAS  Google Scholar 

  15. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) Chem Phys Lett 409:295

    Article  CAS  Google Scholar 

  16. Osanai Y, Noro T, Miyoshi E (2002) J Chem Phys 117:9623

    Article  CAS  Google Scholar 

  17. Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142

    Article  CAS  Google Scholar 

  18. Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T (2004) J Chem Phys 120:6408

    Article  CAS  Google Scholar 

  19. Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T (2006) J Comp Chem 27:463

    Article  CAS  Google Scholar 

  20. Noro T, Sekiya M, Osanai Y, Koga T, Matsuyama H (2007) J Comp Chem 28:2511

    Article  CAS  Google Scholar 

  21. Noro T, Sekiya M, Koga T (2008) Theor Chem Acc 121:289

    Article  CAS  Google Scholar 

  22. Dyall KG (1998) Theor Chem Acc 99:366

    Article  CAS  Google Scholar 

  23. Dyall KG (2002) Theor Chem Acc 108:365

    Article  CAS  Google Scholar 

  24. Dyall KG (2002) Theor Chem Acc 108:335

    Article  CAS  Google Scholar 

  25. Dyall KG (2004) Theor Chem Acc 112:403

    Article  CAS  Google Scholar 

  26. Dyall KG (2006) Theor Chem Acc 115:441

    Article  CAS  Google Scholar 

  27. Dyall KG (2007) Theor Chem Acc 117:483

    Article  CAS  Google Scholar 

  28. Dyall KG (2007) Theor Chem Acc 117:491

    Article  CAS  Google Scholar 

  29. Dyall KG (2009) J Phys Chem A 113:12638

    Article  CAS  Google Scholar 

  30. Dyall KG, Gomes ASP (2010) Theor Chem Acc 125:97

    Article  CAS  Google Scholar 

  31. Gomes ASP, Visscher L, Dyall KG (2010) Theor Chem Acc 127:369

    Article  CAS  Google Scholar 

  32. Dyall KG (2011) Theor Chem Acc 129:603

    Article  CAS  Google Scholar 

  33. Dyall KG (2012) Theor Chem Acc 131. doi:10.1007/s00214-012-1172-4

  34. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  35. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Computer Phys Commun 55:425

    Article  CAS  Google Scholar 

  36. Dyall KG, Fægri K Jr (1996) Theor Chim Acta 94:39

    CAS  Google Scholar 

  37. Seth M, Shepard R, Wagner A, Dyall KG (2001) J Phys B 34:2383

    Article  CAS  Google Scholar 

  38. Morishita Y, Tamenori Y, Okada K, Oyama T, Yamamoto K, Tabayashi K, IbukiT Moribayashi K, Suzuki IH (2006) J Phys B 39:1323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Schrödinger, Inc. for access to computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. Dyall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyall, K.G. Core correlating basis functions for elements 31–118. Theor Chem Acc 131, 1217 (2012). https://doi.org/10.1007/s00214-012-1217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1217-8

Keywords

Navigation