Abstract
Photoelectrochemical cells with TiO2 electrodes to convert sunlight and water into gaseous hydrogen and oxygen are a source of clean and renewable fuel. Despite their great potential, far-from-ideal performance and poor utilization of the solar spectrum have prevented them from becoming a widespread and practical technology. We review recent experimental work that uses dynamics measurements to study limitations of photoelectrochemical cells from a fundamental level and the use of TiO2 nanotube arrays as a superior alternative to TiO2 nanoparticles. Through a combination of nanoscale size control, doping, composite materials, and the incorporation of noble-metal nanoparticles, improved performance and light harvesting are demonstrated.










Similar content being viewed by others
Abbreviations
- AM 1.5 G:
-
Air mass 1.5 global
- FDTD:
-
Finite-difference time-domain
- NP:
-
Nanoparticle
- NT:
-
Nanotube
- PEC:
-
Photoelectrochemical
- SPR:
-
Surface plasmon resonance
- TA:
-
Transient absorption
- XPS:
-
X-ray photoelectron spectroscopy
References
Lewis NS, Crabtree G, Nozik AJ, Wasielewski MR, Alivisatos AP (2006) Basic research needs for solar energy utilization. US Department of Energy, Washington
Fukushima A, Hasimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications, 1st edn. BKC, Tokyo
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38
Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114(9):4208–4214
Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851
Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570
Hartmann P, Lee D-K, Smarsly BM, Janek J (2010) Mesoporous TiO2: comparison of classical sol−gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4(6):3147–3154
Gueymard CA, Myers D, Emery K (2002) Proposed reference irradiance spectra for solar energy systems testing. Sol Energy 73(6):443–467
Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2007) Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 9(12):1453–1460
Murai M, Tamaki Y, Furube A, Hara K, Katoh R (2007) Reaction of holes in nanocrystalline TiO2 films evaluated by highly sensitive transient absorption spectroscopy. Catal Today 120(2):214–219
Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891
Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381–3399
Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K, Grätzel M, Durrant JR, Klug DR (2011) Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J Am Chem Soc 133(26):10134–10140
de Jongh PE, Vanmaekelbergh D (1996) Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys Rev Lett 77(16):3427
Leng WH, Barnes PRF, Juozapavicius M, O’Regan BC, Durrant JR (2010) Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation. J Phys Chem Lett 1(6):967–972
Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer US, Boston
Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17(15):1451–1457
Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11(1–2):3–18
Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359
Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21(25):8955–8970
Allam NK, Grimes CA (2009) Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. Langmuir 25(13):7234–7240
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27(7):629–637
Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707
Yin H et al (2010) The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21(3):035601
Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2004) Enhanced photocleavage of water using Titania nanotube arrays. Nano Lett 5(1):191–195
Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, MacManus-Driscoll JL (2010) The rapid growth of 3 μm long Titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology 21(5):055601
Li H, Qu J, Cui Q, Xu H, Luo H, Chi M, Meisner RA, Wang W, Dai S (2011) TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening. J Mater Chem 21(26):9487–9490
Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixeira SrR (2011) Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces 3(4):1359–1365
Allam NK, El-Sayed MA (2010) Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: structural and optical properties. J Phys Chem C 114(27):12024–12029
Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18(01):156–165
Sun Y, Yan K, Wang G, Guo W, Ma T (2011) Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J Phys Chem C 115(26):12844–12849
Hardcastle FD, Ishihara H, Sharma R, Biris AS (2011) Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J Mater Chem 21(17):6337–6345
Park JH, Kim S, Bard AJ (2005) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28
Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mater Sol Cells 92(4):374–384
Im JS, Lee SK, Lee Y-S (2011) Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell. Appl Surf Sci 257(6):2164–2169
Hamedani HA, Allam NK, Garmestani H, El-Sayed MA (2011) Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J Phys Chem C 115(27):13480–13486
Xu L, Tang C-Q, Qian J, Huang Z-B (2010) Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2. Appl Surf Sci 256(9):2668–2671
Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D Appl Phys 39(11):2361–2366
Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108(50):19384–19387
Lindgren T, Mwabora JM, Avendaño E, Jonsson J, Hoel A, Granqvist C-G, Lindquist S-E (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107(24):5709–5716
Li Q, Shang JK (2009) Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol 43(23):8923–8929
Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11(3):1111–1116
Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti−Fe−O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7(8):2356–2364
Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi K-S, Grimes CA (2008) p-Type Cu−Ti−O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8(7):1906–1911
Allam NK, Poncheri AJ, El-Sayed MA (2011) Vertically oriented Ti–Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting. ACS Nano 5(6):5056–5066
Nah Y-C, Ghicov A, Kim D, Berger S, Schmuki P (2008) TiO2−WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J Am Chem Soc 130(48):16154–16155
Bayoumi FM, Ateya BG (2006) Formation of self-organized titania nano-tubes by dealloying and anodic oxidation. Electrochem Commun 8(1):38–44
Berger S, Tsuchiya H, Schmuki P (2008) Transition from nanopores to nanotubes: self-ordered anodic oxide structures on titanium−aluminides. Chem Mater 20(10):3245–3247
Mohapatra SK, Raja KS, Misra M, Mahajan VK, Ahmadian M (2007) Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim Acta 53(2):590–597
Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P (2006) TiO2–Nb2O5 nanotubes with electrochemically tunable morphologies. Angew Chem Int Ed 45(42):6993–6996
Dongyan D et al (2009) Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Nanotechnology 20(30):305103
Yasuda K, Schmuki P (2007) Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochem Commun 9(4):615–619
Allam NK, Alamgir F, El-Sayed MA (2010) Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti−Nb−Zr−O mixed oxide nanotube arrays. ACS Nano 4(10):5819–5826
Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750
Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033
Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586
Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4–6):153–164
Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113(16):6454–6462
Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853
Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C 113(37):16394–16401
Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205
Zhang Z, Yates JT (2010) Direct observation of surface-mediated electron−hole pair recombination in TiO2(110). J Phys Chem C 114(7):3098–3101
Subramanian V, Wolf E, Kamat PV (2001) Semiconductor−metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105(46):11439–11446
Lahiri D, Subramanian V, Shibata T, Wolf EE, Bunker BA, Kamat PV (2003) Photoinduced transformations at semiconductor/metal interfaces: X-ray absorption studies of titania/gold films. J Appl Phys 93(5):2575–2582
Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under uv−irradiation. J Am Chem Soc 127(11):3928–3934
Sakai H, Kanda T, Shibata H, Ohkubo T, Abe M (2006) Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J Am Chem Soc 128(15):4944–4945
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680
Chuang H-Y, Chen D-H (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20(10):105704
Furube A, Wang Z-S, Sunahara K, Hara K, Katoh R, Tachiya M (2010) Femtosecond diffuse reflectance transient absorption for dye-sensitized solar cells under operational conditions: effect of electrolyte on electron injection. J Am Chem Soc 132(19):6614–6615
Allam NK, Grimes CA (2009) Effect of rapid infrared annealing on the photoelectrochemical properties of anodically fabricated TiO2 nanotube arrays. J Phys Chem C 113(19):7996–7999
Acknowledgments
The authors would like to thank the financial support of the Office of Basic Energy Sciences of the US Department of Energy under contract number DE-FG02-97ER14799.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.
Rights and permissions
About this article
Cite this article
Szymanski, P., El-Sayed, M.A. Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. Theor Chem Acc 131, 1202 (2012). https://doi.org/10.1007/s00214-012-1202-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-012-1202-2