Skip to main content
Log in

Low-lying electronic states of HNCS and its ions: a CASSCF/CASPT2 study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Complete active space self-consistent-field (CASSCF) and multiconfigurational second-order perturbation theory (CASPT2) calculations in conjunction with the ANO-L basis set were performed to investigate systematically the low-lying electronic states of HNCS and its ions in C s symmetry. Our highly accurate calculation indicated that theoretically determined geometric parameters and harmonic vibrational frequencies for the ground-state X 1A′ are in good agreement with observed experimental data. The geometry of triplet HNCS is clearly favored C 1 symmetry, and the relative energy is predicted to be 3.000 eV (69.2 kcal/mol). The vertical transition energies for the selected excited states of HNCS were calculated at CASSCF/CASPT2/ANO-L level of theory based on CASSCF optimized geometry. Except for a few linear states of X 2Π (12A′, 12A″), 14Σ (14A″), and 12Σ+ (32A′) states of HNCS+, our results confirmed that the majority of excited states are twisted trans-bend structures. The existence of bound excited anion states has been found for the first time in HNCS. A more elaborate examination of ionization potential of HNCS (AIP, VIP) than previous reports has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Frerking MA, Linke RA, Thaddeus P (1979) Astrophys J 234:143

    Article  Google Scholar 

  2. Irvine WM (1999) Space Sci Rev 90:203

    Article  CAS  Google Scholar 

  3. Halfen DT, Ziurys LM, Brünken S, Gottlieb CA, McCarthy MC, Thaddeus P (2009) Astrophys J 702:124

    Article  Google Scholar 

  4. Beard CI, Dailey BP (1947) J Chem Phys 15:762

    Article  CAS  Google Scholar 

  5. Beard CI, Dailey BP (1950) J Chem Phys 18:1437

    Article  CAS  Google Scholar 

  6. Jones LH, Badger RM (1950) J Chem Phys 18:1511

    Article  CAS  Google Scholar 

  7. Reid C (1950) J Chem Phys 18:1512

    Article  CAS  Google Scholar 

  8. Dousmanis GC, Sanders TM, Townes CH, Zeiger HJ (1953) J Chem Phys 21:1416

    Article  CAS  Google Scholar 

  9. Hobrock BG, Shenkel RC, Kiser RW (1963) J Phys Chem 67:1684

    Article  CAS  Google Scholar 

  10. Dillard JG, Franklin JL (1968) J Chem Phys 48:2353

    Article  CAS  Google Scholar 

  11. Krakow B, Lord RC, Neely GO (1968) J Mol Spectrosc 27:148

    Article  CAS  Google Scholar 

  12. Schettino V, Hisatsune IC (1970) J Chem Phys 52:9

    Article  CAS  Google Scholar 

  13. Chaturvedi GC, Subbaram KV, Rao DR, Rao CNR (1971) J Mol Spectrosc 39:242

    Article  Google Scholar 

  14. Draper GR, Werner RL (1974) J Mol Spectrosc 50:369

    Article  CAS  Google Scholar 

  15. Yamada K, Winnewisser M, Winnewisser G, Szalanski LB, Gerry MCL (1980) J Mol Spectrosc 79:295

    Article  Google Scholar 

  16. Polak M, Gruebele M, Saykally RJ (1987) J Chem Phys 87:3352

    Article  CAS  Google Scholar 

  17. Jacox ME (1988) J Phys Chem Ref Data 17:269

    Google Scholar 

  18. Northrup FJ, Sears TJ (1990) J Phys Chem 93:2346

    Article  CAS  Google Scholar 

  19. Kambouris P, Plisnier M, Flammang R, Terlouw JK, Wentrup C (1991) Tetrahedron Lett 32:1497

    Article  Google Scholar 

  20. Brandforth SE, Kim EH, Arnold DW, Neumark DM (1992) J Chem Phys 98:800

    Article  Google Scholar 

  21. Ruscic B, Berkowitz J (1994) J Chem Phys 101:7975

    Article  CAS  Google Scholar 

  22. Wierzejewska M, Mielke Z (2001) Chem Phys Lett 349:227

    Article  CAS  Google Scholar 

  23. Wentrup C, Kambouris P (1991) Chem Rev 91:363

    Article  CAS  Google Scholar 

  24. Niedenhoff M, Yamada KMT, Winnewisser G (1997) J Mol Spectrosc 183:176

    Article  CAS  Google Scholar 

  25. Bak B, Christiansen JJ, Nielsen OJ, Svanholt H (1977) Acta Chem Scand 31:666

    Article  CAS  Google Scholar 

  26. Gimarc BM, Woodcock DA (1981) J Mol Struc-theochem 85:37

    Article  Google Scholar 

  27. Koch W, Frenking G (1987) J Phys Chem 91:49

    Article  CAS  Google Scholar 

  28. Gerbaux P, Haverbeke YV, Flammang R (1997) J Phys Chem A 101:6970

    Article  CAS  Google Scholar 

  29. Chen H-T, Ho J-J (2003) J Phys Chem A 107:7004

    Article  CAS  Google Scholar 

  30. Novak I (2003) J Phys Chem A 107:2743

    Article  CAS  Google Scholar 

  31. Wierzejewska M, Moc J (2003) J Phys Chem A 107:11209

    Article  CAS  Google Scholar 

  32. Wierzejewska M, Wieczorek R (2003) Chem Phys 287:169

    Article  CAS  Google Scholar 

  33. Wierzejewska M, Olbert-Majkut A (2003) J Phys Chem A 107:1928

    Article  CAS  Google Scholar 

  34. Pankratov AN, Khmelev SS (2005) J Serb Chem Soc 70:1183

    Article  CAS  Google Scholar 

  35. Durig JR, Zheng C, Deeb H (2006) J Mol Struct 784:78

    Article  CAS  Google Scholar 

  36. Xu J-H, Li L-C, Zheng Y, Liu J-L, Wang X (2007) J Theor Comput Chem 6:1

    Article  CAS  Google Scholar 

  37. Pasinszki T, Bazso G, Krebsz M, Tarczay G (2009) Phys Chem Chem Phys 11:9458

    Article  CAS  Google Scholar 

  38. Singh R, Dikshit SK (1995) Polyhedron 14:1799

    Article  CAS  Google Scholar 

  39. Silva S, Simão AC, Tatibouët A, Rollin P, Rauter AP (2008) Tetrahedron Lett 49:682

    Article  CAS  Google Scholar 

  40. Yamada K, Winnewisser M, Winnewisser G, Szalanski LB, Gerry MCL (1979) J Mol Spectrosc 78:189

    Article  CAS  Google Scholar 

  41. Pasinszki T, Kishimoto N, Ohno K (1999) J Phys Chem A 103:9195

    Article  CAS  Google Scholar 

  42. Martin ME, Negri F, Olivucci M (2004) J Am Chem Soc 126:5452

    Article  CAS  Google Scholar 

  43. Merchán M, Serrano-Andrés L, Robb MA, Blancafort L (2005) J Am Chem Soc 127:1820

    Article  Google Scholar 

  44. Gagliardi L, Roos BO (2007) Chem Soc Rev 36:893

    Article  CAS  Google Scholar 

  45. Liu FY, Liu YJ, Vico LD, Lindh R (2009) J Am Chem Soc 131:6181

    Article  CAS  Google Scholar 

  46. Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  47. Malmqvist P-Ǻ, Rendell A, Roos BO (1990) J Phys Chem 94:5477

    Article  CAS  Google Scholar 

  48. Andersson K, Malmqvist P-Ǻ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  49. McKellar ARW, Bunker PR, Sears TJ, Evenson KM, Saykally RJ, Langhoff SR (1983) J Chem Phys 79:5251

    Article  CAS  Google Scholar 

  50. Widmark P-O, Persson BJ, Roos BO (1991) Theor Chim Acta 79:419

    Article  CAS  Google Scholar 

  51. Malmqvist P-Ǻ (1986) Int J Quantum Chem 30:479

    Article  CAS  Google Scholar 

  52. Malmqvist P-Ǻ, Roos BO (1989) Chem Phys Lett 155:189

    Article  CAS  Google Scholar 

  53. Lee TJ, Fox DJ, Schaefer HF III (1984) J Chem Phys 81:356

    Article  CAS  Google Scholar 

  54. Lykke KR, Neumark DM, Anderson T, Trapa VJ, Lineberger WC (1987) J Chem Phys 87:6842

    Article  CAS  Google Scholar 

  55. Marks J, Brauman JI, Mead RD, Lykke KR, Lineberger WC (1988) J Chem Phys 88:785

    Article  Google Scholar 

  56. Brinkman EA, Berger S, Marks J, Brauman JI (1993) J Chem Phys 99:7586

    Article  CAS  Google Scholar 

  57. Desfrançois C, Abdoul-Carime H, Adjouri C, Khelifa N, Schermann J-P (1994) Europhys Lett 26:25

    Article  Google Scholar 

  58. Popple RA, Finch CD, Dunning FB (1995) Chem Phys Lett 234:172

    Article  CAS  Google Scholar 

  59. Abdoul-Carime H, Desfrançois C (1998) Eur Phys J D 2:149

    CAS  Google Scholar 

  60. Lecomte F, Carles S, Desfrançois C (2000) J Chem Phys 113:10973

    Article  CAS  Google Scholar 

  61. Suess L, Liu Y, Parthasarathy P, Dunning FB (2003) Chem Phys Lett 376:376

    Article  CAS  Google Scholar 

  62. Hammer NI, Jordan KD, Desfrançois C, Compton RN (2003) J Chem Phys 119:3650

    Article  CAS  Google Scholar 

  63. Suess L, Liu Y, Parthasarathy P, Dunning FB (2004) J Chem Phys 121:7162

    Article  CAS  Google Scholar 

  64. Clary DC (1988) J Phys Chem 92:3173

    Article  CAS  Google Scholar 

  65. Simons J (1989) J Chem Phys 91:6858

    Article  CAS  Google Scholar 

  66. Giri PR, Gupta KS, Meijanac S, Samsarov A (2008) Phys Lett A 372:2967

    Article  CAS  Google Scholar 

  67. Cradock S, Ebsworth EAV, Murdoch JD (1972) J Chem Soc Faraday Trans 68:86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 20973076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xing Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 648 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Zhao, ZX., Song, MX. et al. Low-lying electronic states of HNCS and its ions: a CASSCF/CASPT2 study. Theor Chem Acc 128, 215–222 (2011). https://doi.org/10.1007/s00214-010-0833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0833-4

Keywords