Skip to main content
Log in

Transition metal oxide clusters with character of oxygen-centered radical: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are applied to study the structure and bonding properties of groups 3–7 transition metal oxide clusters M x=1–3O q y and Scx=4–6O q y with 2y − nx + q = 1, in which n is the number of metal valence electrons and q is the charge number. These clusters include MO2, M 2O3 +, M 2O4 , and M 3O5 (M = Sc, Y, La); MO2 +, MO3 , M 2O4 +, M 2O5 , M 3O6 +, and M 3O7 (M = Ti, Zr, Hf), and so on. The obtained lowest energy structures of most of these clusters are with character of oxygen-centered radical (O·). That is, the clusters contain oxygen atom(s) with the unpaired electron being localized on the 2p orbital(s). Chromium and manganese oxide clusters (except CrO4 ) do not contain O· with the adopted DFT methods. The binding energies of the radical oxygen with the clusters are also calculated. The DFT results are supported by available experimental investigations and predict that a lot of other transition metal oxide clusters including those with mixed-metals (such as TiVO5 and CrVO6) may have high oxidative reactivity that has not been experimentally identified. The chemical structures of radical oxygen over V2O5/SiO2 and MoO3/SiO2 catalysts are suggested and the balance between high reactivity and low concentration of the radical oxygen in condensed phase catalysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barteau MA (1996) Chem Rev 96:1413

    Google Scholar 

  2. Fierro GJL (2006) Metal oxides chemistry and applications. Taylor & Francis, London

    Google Scholar 

  3. Surnev S, Ramsey MG, Netzer FP (2003) Prog Surf Sci 73:117

    Google Scholar 

  4. Bell AT (2003) Science 299:1688

    Google Scholar 

  5. Martinez-Huerta MV, Gao X, Tian H, Wachs IE, Fierro JLG, Banares MA (2006) Catal Today 118:279

    Google Scholar 

  6. Li M, Shen J (2002) J Catal 205:248

    Google Scholar 

  7. Zhao C, Wachs IE (2006) Catal Today 118:332

    Google Scholar 

  8. Dunn JP, Stenger HG, Wachs IE (1999) Catal Today 51:301

    Google Scholar 

  9. Yamazoe S, Masutani Y, Teramura K, Hitomi Y, Shishido T, Tanaka T (2008) Appl Catal B Environ 83:123

    Google Scholar 

  10. Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayeka K, Klötzer B (2007) Phys Chem Chem Phys 9:533

    Google Scholar 

  11. Alvarez-Merino MA, Ribeiro MF, Silva JM, Carrasco-Marn F, Maldonado-Hdar FJ (2004) Environ Sci Technol 38:4664

    Google Scholar 

  12. Seiyama T, Nita K, Maehara T, Yamazoe N, Takita Y (1997) J Catal 49:164

    Google Scholar 

  13. Ushikubo T (2000) Catal Today 57:331

    Google Scholar 

  14. Shvets VA, Kazansky VB (1972) J Catal 25:123

    Google Scholar 

  15. Ben TY, Lunsford JH (1973) Chem Phys Lett 19:348

    Google Scholar 

  16. Liu RS, Iwamoto M, Lunsford JH (1982) J Chem Soc Chem Commun 78

  17. Lipatkina NI, Shvets VA, Kazansky VB (1978) Kinet Katal 19:979

    Google Scholar 

  18. Liu HF, Liu RS, Liew KY, Johnson RE, Lunsford JH (1984) J Am Chem Soc 106:4117

    Google Scholar 

  19. Khan MM, Somorjai GA (1985) J Catal 91:263

    Google Scholar 

  20. Zhen KJ, Khan MM, Mak CH, Lewis KB, Somorjai GA (1985) J Catal 94:501

    Google Scholar 

  21. Ward MB, Lin MJ, Lunsford JH (1977) J Catal 50:306

    Google Scholar 

  22. Launay H, Loridant S, Nguyen DL, Volodin AM, Dubois JL, Millet JMM (2007) Catal Today 128:176

    Google Scholar 

  23. Parfenov MV, Starokon EV, Semikolenov SV, Panov GI (2009) J Catal 263:173

    Google Scholar 

  24. Chernyavsky VS, Pirutko LV, Uriarte AK, Kharitonov AS, Panov GI (2007) J Catal 245:466

    Google Scholar 

  25. Dubkov KA, Ovanesyan NS, Shteinman AA, Starokon EV, Panov GI (2002) J Catal 207:341

    Google Scholar 

  26. Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2007) Appl Catal A 319:128

    Google Scholar 

  27. Schröder D, Schwarz H (1995) Angew Chem Int Ed 34:1973

    Google Scholar 

  28. Johnson JRT, Panas I (2000) Inorg Chem 39:3192

    Google Scholar 

  29. Waters T, O’Hair RAJ, Wedd AG (2003) J Am Chem Soc 125:3384

    Google Scholar 

  30. Justes DR, Moore NA, Castleman AW Jr (2004) J Phys Chem B 108:3855

    Google Scholar 

  31. Fu G, Xu X, Wan HL (2006) Catal Today 117:133

    Google Scholar 

  32. Feyel S, Scharfenberg L, Daniel C, Hartl H, Schröder D, Schwarz H (2007) J Phys Chem A 111:3278

    Google Scholar 

  33. Wang ZC, Ding XL, Ma YP, Cao H, Wu XN, Zhao YX, He SG (2009) Chin Sci Bull 54:2814

    Google Scholar 

  34. Ma YP, Xue W, Wang ZC, Ge MF, He SG (2008) J Phys Chem A 112:3731

    Google Scholar 

  35. Ding XL, Xue W, Ma YP, Zhao YX, Wu XN, He SG (2010) J Phys Chem C 114:3161

    Google Scholar 

  36. Li HB, Tian SX, Yang JL (2009) Chem Eur J 41:10747

    Google Scholar 

  37. Dong F, Heinbuch S, Xie Y, Rocca JJ, Bernstein ER, Wang ZC, Deng K, He SG (2008) J Am Chem Soc 130:1932

    Google Scholar 

  38. He SG, Xie Y, Dong F, Heinbuch S, Jakubikova E, Rocca JJ, Bernstein ER (2008) J Phys Chem A 112:11067

    Google Scholar 

  39. Dong F, Heinbuch S, Xie Y, Bernstein ER, Rocca JJ, Wang ZC, Ding XL, He SG (2009) J Am Chem Soc 131:1057

    Google Scholar 

  40. Zemski KA, Justes DR, Castleman AW Jr (2001) J Phys Chem A 105:10237

    Google Scholar 

  41. Justes DR, Mitrić R, Moore NA, Bonačić-Koutecký V, Castleman AW Jr (2003) J Am Chem Soc 125:6289

    Google Scholar 

  42. Justes DR, Castleman AW Jr, Mitrić R, Bonačić-Koutecký V (2003) Eur Phys J D 24:331

    Google Scholar 

  43. Moore NA, Mitrić R, Justes DR, Bonačić-Koutecký V, Castleman AW Jr (2006) J Phys Chem B 110:3015

    Google Scholar 

  44. Bell RC, Zemski KA, Kerns KP, Deng HT, Castleman AW Jr (1998) J Phys Chem A 102:1733

    Google Scholar 

  45. Feyel S, Döbler J, Schröder D, Sauer J, Schwarz H (2006) Angew Chem Int Ed 45:4681

    Google Scholar 

  46. Feyel S, Schröder D, Schwarz H (2006) J Phys Chem A 110:2647

    Google Scholar 

  47. Zemski KA, Justes DR, Castleman AW Jr (2002) J Phys Chem B 106:6136

    Google Scholar 

  48. Kretzschmar I, Fiedler A, Harvey JN, Schröder D, Schwarz H (1997) J Phys Chem A 101:6252

    Google Scholar 

  49. Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111:75

    Google Scholar 

  50. Fialko EF, Kikhtenko AV, Goncharov VB, Zamaraev KI (1997) J Phys Chem A 101:8607

    Google Scholar 

  51. Johnson GE, Tyo EC, Castleman AW Jr (2008) Proc Natl Acad Sci USA 105:18108

    Google Scholar 

  52. Harvey JN, Diefenbach M, Schröder D, Schwarz H (1999) Int J Mass Spectrom 182/183:85

    Google Scholar 

  53. Johnson GE, Mitrić R, Tyo EC, Bonačić-Koutecký V, Castleman AW Jr (2008) J Am Chem Soc 130:13912

    Google Scholar 

  54. Wu XN, Zhao YX, He SG, Ding XL (2009) Chin J Chem Phys 22:635

    Google Scholar 

  55. Schröder D, Roithová J (2006) Angew Chem Int Ed 45:5705

    Google Scholar 

  56. Feyel S, Döbler J, Höckendorf R, Beyer MK, Sauer J, Schwarz H (2008) Angew Chem Int Ed 47:1946

    Google Scholar 

  57. Sierka M, Döbler J, Sauer J, Santambrogio G, Brümmer M, Wöste L, Janssens E, Meijer G, Asmis KR (2007) Angew Chem Int Ed 46:3372

    Google Scholar 

  58. Bell RC, Castleman AW Jr (2002) J Phys Chem A 106:9893

    Google Scholar 

  59. Li SH, Mirabal A, Demuth J, Wöste L, Siebert T (2008) J Am Chem Soc 130:16832

    Google Scholar 

  60. Johnson GE, Mitrić R, Nössler M, Tyo EC, Bonačić-Koutecký V, Castleman AW Jr (2009) J Am Chem Soc 131:5460

    Google Scholar 

  61. Johnson GE, Mitrić R, Bonačić-Koutecký V, Castleman AW Jr (2009) Chem Phys Lett 475:1

    Google Scholar 

  62. Xue W, Yin S, Ding XL, He SG, Ge MF (2009) J Phys Chem A 113:5302

    Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.05. Gaussian Inc, Wallingford

    Google Scholar 

  64. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  65. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  66. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  67. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Google Scholar 

  68. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Google Scholar 

  69. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Google Scholar 

  70. Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO, version 3.1

  71. Li S, Dixon DA (2006) J Phys Chem A 110:6231

    Google Scholar 

  72. Li S, Dixon DA (2007) J Phys Chem A 111:11908

    Google Scholar 

  73. Zhai HJ, Li S, Dixon DA, Wang LS (2008) J Am Chem Soc 130:5167

    Google Scholar 

  74. Li S, Zhai HJ, Wang LS, Dixon DA (2009) J Phys Chem A 113:11273

    Google Scholar 

  75. Li S, Dixon DA (2007) J Phys Chem A 111:11093

    Google Scholar 

  76. Li S, Hennigan JM, Dixon DA, Peterson KA (2009) J Phys Chem A 113:7861

    Google Scholar 

  77. Perdew JP, Wang Y (1991) Phys Rev B 45:13244

    Google Scholar 

  78. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Google Scholar 

  79. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718

    Google Scholar 

  80. Lee TJ, Taylor PR (1989) Int J Quantum Chem S23:199

    Google Scholar 

  81. Huber K, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic Molecules. Van Nostrand Rheinhold, NewYork. See also Chemistry Webbook from the NIST website (http://nist.gov/)

  82. Gordon RM, Merer AJ (1980) Can J Phys 58:642

    Google Scholar 

  83. Hamrick YM, Taylor S, Morse MD (1991) J Mol Spectrosc 146:274

    Google Scholar 

  84. Yao C, Guan W, Song P, Su ZM, Feng JD, Yan LK, Wu ZJ (2007) Theor Chem Acc 117:115

    Google Scholar 

  85. Gutsev GL, Andrews L, Bauschlicher CW Jr (2003) Theor Chem Acc 109:298

    Google Scholar 

  86. Song P, Guan W, Yao C, Su ZM, Wu ZJ, Feng JD, Yan LK (2007) Theor Chem Acc 117:407

    Google Scholar 

  87. Loocka HP, Simard B, Wallin S, Linton C (1998) J Chem Phys 109:8980

    Google Scholar 

  88. Pedley JB, Marshall EM (1983) J Phys Chem Ref Data 12:967

    Google Scholar 

  89. Gole JL, Chalek CL (1976) J Chem Phys 65:4384

    Google Scholar 

  90. Ackermann RJ, Rauh EG (1974) J Chem Phys 60:2266

    Google Scholar 

  91. Smoes S, Drowart J, Myers CE (1976) J Chem Thermody 8:225

    Google Scholar 

  92. Hinton CS, Li FX, Armentrout PB (2009) Int J Mass Spectrom 280:226

    Google Scholar 

  93. Clemmer DE, Elkind JL, Aristov N, Armentrout PB (1991) J Chem Phys 95:3387

    Google Scholar 

  94. Harrington J, Weisshaar JC (1992) J Chem Phys 97:2809

    Google Scholar 

  95. Dyke JM, Gravenor BWJ, Lewis RA, Morris A (1983) J Chem Soc Faraday Trans 79:2083

    Google Scholar 

  96. Armentrout PB, Halle LF, Beauchamp JL (1982) J Chem Phys 76:2449

    Google Scholar 

  97. Rauh EG, Ackermann RJ (1974) J Chem Phys 60:1396

    Google Scholar 

  98. Rauh EG, Ackermann RJ (1975) J Chem Phys 62:1584

    Google Scholar 

  99. Merritt JM, Bondybey VE, Heaven MC (2009) J Chem Phys 109:8980

    Google Scholar 

  100. Dyke JM, Ellis AM, Feher M, Morris A, Paul AJ, Stevens JCH (1987) J Chem Soc Faraday Trans 83:1555

    Google Scholar 

  101. Tonkyn RG, Winniczek JW, White MG (1989) Chem Phys Lett 164:137

    Google Scholar 

  102. Wu HB, Wang LS (1998) J Phys Chem A 102:9129

    Google Scholar 

  103. Thomas OC, Xu SJ, Lippa TP, Bowen KH (1999) J Cluster Sci 10:525

    Google Scholar 

  104. Green SME, Alex S, Fleischer NL, Millam EL, Marcy TP, Leopoldf DG (2001) J Chem Phys 114:2653

    Google Scholar 

  105. Gunion RF, Dixon-Warren SJ, Lineberger WC (1996) J Chem Phys 104:1765

    Google Scholar 

  106. Zheng WJ, Li X, Eustis S, Bowen K (2008) Chem Phys Lett 130:144503

    Google Scholar 

  107. Ervin KM, Anusiewicz W, Skurski P, Simons J, Lineberger WC (2003) J Phys Chem A 107:8521

    Google Scholar 

  108. Li S, Dixon DA (2008) J Phys Chem A 112:6646

    Google Scholar 

  109. Vyboishchikov SF, Sauer J (2001) J Phys Chem A 105:8588

    Google Scholar 

  110. Ding XL, Xue W, Ma YP, Wang ZC, He SG (2009) J Chem Phys 130:014303

    Google Scholar 

  111. Dong F, Heinbuch S, He SG, Xie Y, Rocca JJ, Bernstein ER (2006) J Chem Phys 125:164318

    Google Scholar 

  112. Balducci G, Gigli G, Guido M (1981) J Chem Soc Faraday Trans II 77:1107

    Google Scholar 

  113. Zhai HJ, Wang LS (2008) J Am Chem Soc 2007 129:3022

    Google Scholar 

  114. Asmis KR, Sauer J (2007) Mass Spectrom Rev 26:542

    Google Scholar 

  115. Xie Y, He SG, Dong F, Bernstein ER (2008) J Chem Phys 128:044306

    Google Scholar 

  116. Calatayud M, Silvi B, Andrés J, Beltrán A (2001) Chem Phys Lett 333:493

    Google Scholar 

  117. Gong Y, Zhou MF (2009) Chem Rev 109:6765

    Google Scholar 

  118. Wang ZC, Xue W, Ma YP, Ding XL, He SG, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2008) J Phys Chem A 112:5984

    Google Scholar 

  119. Xue W, Wang ZC, He SG, Xie Y, Bernstein ER (2008) J Am Chem Soc 130:15879

    Google Scholar 

  120. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041

    Google Scholar 

  121. Fielicke A, Meijer G, von Helden G (2003) J Am Chem Soc 125:3659

    Google Scholar 

  122. Brümmer M, Kaposta C, Santambrogio G, Asmis KR (2003) J Chem Phys 119:12700

    Google Scholar 

  123. Gutsev GL, Jena P, Zhai HJ, Wang LS (2001) J Chem Phys 115:7935

    Google Scholar 

  124. Zhai HJ, Kiran B, Cui LF, Li X, Dixon DA, Wang LS (2004) J Am Chem Soc 126:16134

    Google Scholar 

  125. Uzunova EL, Mikosch H, Nikolov GS (2008) J Chem Phys 128:094307

    Google Scholar 

  126. Andrews L, Zhou MF, Chertihin GV, Bauschlicher CW Jr (1999) J Phys Chem A 103:6525

    Google Scholar 

  127. Lee EPF, Dyke JM, Mok DKW, Chau FT (2008) J Phys Chem A 112:4511

    Google Scholar 

  128. Calatayud M, Silvi B, Andrés J, Beltrán A (2001) Chem Phys Lett 333:493

    Google Scholar 

  129. Vyboishchikov SF, Sauer J (2000) J Phys Chem A 104:10913

    Google Scholar 

  130. Oliveira JA, Almeida WBD, Duarte HA (2003) Chem Phys Lett 372:650

    Google Scholar 

  131. Gong Y, Wang GJ, Zhou MF (2008) J Phys Chem A 112:4936

    Google Scholar 

  132. Molek KS, Reed ZD, Ricks AM, Duncan MA (2007) J Phys Chem A 111:8080

    Google Scholar 

  133. Reed ZD, Duncan MA (2008) J Phys Chem A 112:5354

    Google Scholar 

  134. Asmis KR, Meijer G, Brümmer M, Kaposta C, Santambrogio G, Wöste L, Sauer J (2004) J Chem Phys 120:6461

    Google Scholar 

  135. Jakubikova E, Rappé AK, Bernstein ER (2007) J Phys Chem A 111:12938

    Google Scholar 

  136. Zhai HJ, Wang LS (2002) J Chem Phys 117:7882

    Google Scholar 

  137. Santambrogio G, Brümmer M, Wöste L, Döbler J, Sierka M, Sauer J, Meijer G, Asmis KR (2008) Phys Chem Chem Phys 10:3992

    Google Scholar 

  138. Knight LB Jr, Babb R, Ray M, Banisaukas TJ, Russon L, Dailey RS, Davidson ER (1996) J Chem Phys 105:10237

    Google Scholar 

  139. Huang X, Zhai HJ, Li J, Wang LS (2006) J Phys Chem A 110:85

    Google Scholar 

  140. Zhai HJ, Huang X, Waters T, Wang XB, O’Hair RAJ, Wedd AG, Wang LS (2005) J Phys Chem A 109:10512

    Google Scholar 

  141. Zemski KA, Justes DR, Bell RC, Castleman AW Jr (2001) J Phys Chem A 105:4410

    Google Scholar 

  142. Zemski KA, Bell RC, Castleman AW Jr (2000) J Phys Chem A 104:5732

    Google Scholar 

  143. Espinosa-García J, Corchado JC (2000) J Chem Phys 112:5731

    Google Scholar 

  144. Fokin AA, Schreiner PR (2002) Chem Rev 102:1551

    Google Scholar 

  145. Sander, SP, Friedl RR, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Huie RE, Orkin VL, Molina MJ, Moortgat GK, Finlayson-Pitts BJ (2003) Chemical kinetics and photochemical data for use in atmospheric studies: evaluation Number 14; JPL Publication 02-25, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

  146. Dobbs KD, Dixon DA, Komornicki A (1993) J Chem Phys 98:8852

    Google Scholar 

  147. Ma JB, Wu XN, Zhao YX, Ding XL, He SG (2010) Experimental and theoretical study of hydrogen atom abstraction from C2H6 and C4H10 by zirconium oxide clusters anions. Chin J Chem Phys (submitted)

  148. Ma YP, Ding XL, Zhao YX, He SG (2010) Chem Phys Chem. doi:10.1002/cphc.200900903

  149. Zhao YX, Wu XN, Wang ZC, He SG, Ding XL (2010) Chem Commun. doi:10.1039/b924603g

  150. Iwamoto M, Hlrata I, Matsukaml K, Kagawa S (1983) J Phys Chem 87:903

    Google Scholar 

  151. Ruszel M, Grzybowska B, Gąsior M, Samson K, Gressel I, Stoch J (2005) Catal Today 99:151

    Google Scholar 

  152. Tohver HT, Henderson B, Chen Y, Abraham MM (1972) Phys Rev B 5:3276

    Google Scholar 

  153. Ito T, Lunsford JH (1985) Nature 314:721

    Google Scholar 

  154. Nolan M, Watson GW (2005) Surf Sci 586:25

    Google Scholar 

  155. Rane VH, Chaudhari ST, Choudhary VR (2008) J Nat Gas Chem 17:313

    Google Scholar 

  156. Wang WG, Wang ZC, Yin S, He SG, Ge MF (2007) Chin J Chem Phys 20:412

    Google Scholar 

  157. Yin S, Ma YP, Du L, He SG, Ge MF (2008) Chin Sci Bull 53:3829

    Google Scholar 

  158. Döbler J, Pritzsche M, Sauer J (2005) J Am Chem Soc 127:10861

    Google Scholar 

  159. Goodrow A, Bell AT (2007) J Phys Chem C 111:14753

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (Nos. 20703048, 20803083, and 20933008), and the 973 Program (No. 2006CB932100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Gui He.

Electronic supplementary material

Below is the link to the electronic supplementary material. Electronic supplementary material: The profiles of spin density distribution of MO q y (Fig. 1SI); The B3LYP optimized structures of MO y q (Fig. 2SI), M 2O q y (Fig. 3SI), and M 3O q y (Fig. 4SI) with Δ = −1; Infrared (IR) spectra of V2O6 cluster (Fig. 5SI); Reaction pathways for reaction of CH4 with CrO3 + isomer that has O· (Fig. 6SI); Coordinates for M x O q y clusters shown in Figs. 1, 2, 4, 6, 8, 2SI, 3SI, 4SI).

Supplementary material 1 (PDF 1668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, YX., Ding, XL., Ma, YP. et al. Transition metal oxide clusters with character of oxygen-centered radical: a DFT study. Theor Chem Acc 127, 449–465 (2010). https://doi.org/10.1007/s00214-010-0732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0732-8

Keywords

Navigation