Skip to main content
Log in

Solvolysis process of organophosphorus compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic fluoride with simple and α-nucleophiles: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been used to study the solvolysis process of the organophosphorus compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic fluoride (GV) with simple nucleophile [hydroxide (HO)] and α-nucleophiles [hydroperoxide (HOO) and hydroxylamine anion (NH2O)]. The lowest energy conformer of GV used for the solvolysis process was identified with Monte Carlo conformational search (MCMM) algorithm employing MMFFs force field followed by DFT calculations. The profound effect was found for α-nucleophiles toward the solvolysis of GV compared to normal alkaline hydrolysis. Incorporation of solvent (water) employing SCRF (PCM) model at B3LYP/6-31+G* showed that solvolysis of GV with hydroperoxide (activation energy = 7.6 kcal/mol) is kinetically more favored compared to hydroxide and hydroxylamine anion (activation energy = 11.0 and 9.2 kcal/mol, respectively). The faster solvolysis of GV with hydroperoxide is achieved due to strong intermolecular hydrogen bonding in the transition state geometry compared to similar α-nucleophile hydroxylamine anion. Assistance of a water molecule in solvolysis of GV affects the activation barriers; however, the hydroperoxidolysis remains the preferential process. The topological properties of electron density distributions for (–X–H···O, X = O, N) intermolecular hydrogen bonding bridges have been analyzed in terms of Bader theory of atoms in molecules (AIM). Further, the analysis was extended by natural bond orbital (NBO) methods for the strength of intermolecular hydrogen bonding in the transition state geometries. This study showed that the reactivity of these α-nucleophiles toward the solvolysis of GV is a delicate balance between the nucleophilicity and hydrogen-bond strength. Solvation governs the overall thermodynamics for the destruction of GV, which otherwise is unfavored in the gas phase studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Bunton CA (1997) Chemical warfare. In: Lagowsky JJ (ed) Macmillan encyclopedia of chemistry. Macmillan Reference USA, vol 1. Simon and Schuster Macmillan, New York, pp 343–346

    Google Scholar 

  2. DeFrank JJ (1991) Organophosphorus cholinesterase inhibitors: detoxification by microbial enzymes. In: Kelly JW, Baldwin TO (eds) Applications of enzyme biotechnolgy. Plenum Press, New York, pp 165–180

    Google Scholar 

  3. Heilbronn-Wikstrom E (1965) Sven Kem Tidskr 77:598–631

    Google Scholar 

  4. Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137

    Article  CAS  Google Scholar 

  5. Quinn DM (1987) Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  6. Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D, Harel M, Silman I, Sussman JL, Velan B (1992) J Biol Chem 267:17640–17648

    CAS  Google Scholar 

  7. Wang J, Roszak S, Gu J, Leszczynski J (2005) J Phys Chem B 109:1006–1014

    Article  CAS  Google Scholar 

  8. Wang J, Gu J, Leszczynski J (2006) J Phys Chem B 110:7567–7573

    Article  CAS  Google Scholar 

  9. Taylor P, Lappi S (1975) Biochemistry 14:1989–1997

    Article  CAS  Google Scholar 

  10. Kumar VP, Ganguly B, Bhattacharya S (2004) J Org Chem 69:8634–8642

    Article  CAS  Google Scholar 

  11. Gershonov E, Columbus I, Zafrani Y (2009) J Org Chem 74:329–338

    Article  CAS  Google Scholar 

  12. Yang YC, Szafraniec LL, Beaudry WT, Rohrbaugh DK (1990) J Am Chem Soc 112:6621–6627

    Article  CAS  Google Scholar 

  13. Simanenko YS, Savelova VA, Prokop’eva TM, Mikhailov VA, Turovskaya MK, Karpichev EA, Popov AF, Gillitt ND, Bunton CA (2004) J Org Chem 69:9238–9240

    Article  CAS  Google Scholar 

  14. Vorontsov AV, Davydov L, Reddy EP, Lion C, Savinov EN, Smirniotis PG (2002) New J Chem 26:732–744

    Article  CAS  Google Scholar 

  15. Vorontsov AV, Chen YC, Smirniotis PG (2004) J Hazard Mat B113:89–95

    Article  Google Scholar 

  16. Michalkova A, Gorb L, IIchenko GM, Zhikol OA, Shishkin OV, Leszczynski J (2004) J Phys Chem B 108:1918–1930

    Article  CAS  Google Scholar 

  17. Keizer TS, Pue De LJ, Parkin S, Atwood DA (2002) J Am Chem Soc 124:1864–1865

    Article  CAS  Google Scholar 

  18. Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM (2003) J Am Chem Soc 125:8990–8991

    Article  CAS  Google Scholar 

  19. Amitai G, Adani R, Hershkovitz M, Bel P, Rabinovitz I, Meshulam H (2003) J Appl Toxicol 23:225–233

    Article  CAS  Google Scholar 

  20. Hoskins FCG, Walker JE, Dettbarn WD, Wild JR (1995) Biochem Pharmacol 49:711–715

    Article  Google Scholar 

  21. Kiddle JJ, Mezyk SP (2004) J Phys Chem B 108:9568–9570

    Article  CAS  Google Scholar 

  22. Aguila A, O’Shea KE, Tobien T, Asmus KD (2001) J Phys Chem A 105:7834–7839

    Article  CAS  Google Scholar 

  23. Hoenig SL (2007) Compendium of chemical warfare agents. Springer, New York, p 100

    Google Scholar 

  24. Royo S, Martínez-Máñez R, Sancenón F, Costero AM, Parra M, Gil S (2007) Chem Commun 4839–4847

  25. Cassagne T, Cristau HJ, Delmas G, Desgranges M, Lion C, Magnaud G, Torreilles É, Virieux D (2001) Heteroat Chem 12:485–490

    Article  CAS  Google Scholar 

  26. Bermudez VM (2007) J Phys Chem C 111:9314–9323

    Article  CAS  Google Scholar 

  27. Bandyopadhyay I, Kim MJ, Lee YS, Churchill DG (2006) J Phys Chem A 110:3655–3661

    Article  CAS  Google Scholar 

  28. Šečkutė J, Menke JL, Emnett RJ, Patterson EV, Cramer CJ (2005) J Org Chem 70:8649–8660

    Article  Google Scholar 

  29. Zheng F, Zhan CG, Ornstein RL (2001) J Chem Soc Perkin Trans 2:2355–2363

    Google Scholar 

  30. Patterson EV, Cramer CJ (1998) J Phys Org Chem 11:232–240

    Article  CAS  Google Scholar 

  31. Daniel KA, Kopff LA, Patterson EV (2008) J Phys Org Chem 21:321–328

    Article  CAS  Google Scholar 

  32. Menke JL, Patterson EV (2007) J Mol Struct: THEOCHEM 811:281–291

    Article  CAS  Google Scholar 

  33. Khan MAS, Kesharwani MK, Bandyopadhyay T, Ganguly B (2009) J Mol Graphics Modell 28:177–182

    Article  CAS  Google Scholar 

  34. Kassa J, Bajgar J (1996) Acta Med 39:27–30

    CAS  Google Scholar 

  35. Chang G, Guida WC, Still WC (1989) J Am Chem Soc 111:4379–4386

    Article  CAS  Google Scholar 

  36. Saunders M, Houk KN, Wu YD, Still WC, Lipton M, Chang G, Guida WC (1990) J Am Chem Soc 112:1419–1427

    Article  CAS  Google Scholar 

  37. Halgren TA (1996) J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  38. Halgren TA (1996) J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  39. Halgren TA (1996) J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  40. Halgren TA (1996) J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  41. Halgren TA, Nachbar RB (1996) J Comput Chem 17:587–615

    CAS  Google Scholar 

  42. Mohamdi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467

    Article  Google Scholar 

  43. Polak E, Ribiere G (1969) Rev Fr Inf Rech Oper 16-R1:35–43

    Google Scholar 

  44. Shenkin PS, McDonald DQ (1994) J Comput Chem 15:899–916

    Article  CAS  Google Scholar 

  45. Hillson SD, Smith E, Zeldin M, Parish CA (2005) J Phys Chem A 109:8371–8378

    Article  CAS  Google Scholar 

  46. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  48. Beck JM, Hadad CM (2008) Chemico biological interactions 175:200–203

    Article  CAS  Google Scholar 

  49. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1988) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford, CT

  51. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  52. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  53. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  54. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  55. Cossi M, Barone V (1998) J Chem Phys 109:6246–6254

    Article  CAS  Google Scholar 

  56. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719

    Article  CAS  Google Scholar 

  57. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43–52

    Article  CAS  Google Scholar 

  58. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  59. Larsson L (1957) Acta Chem Scand 11:1131–1142

    Article  CAS  Google Scholar 

  60. González C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  Google Scholar 

  61. González C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  Google Scholar 

  62. Bader RFW (1990) Atoms in molecule: a quantum theory. Oxford University Press, New York

    Google Scholar 

  63. Cioslowski J, Nanayakkara A, Challacombe M (1993) Chem Phys Lett 203:137–142

    Article  CAS  Google Scholar 

  64. Cioslowski J (1994) Chem Phys Lett 219:151–154

    Article  CAS  Google Scholar 

  65. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Acta Crystallogr B 55:563–572

    Article  Google Scholar 

  66. Glendening DE, Reed AE, Carpenter JE, Weinhold F (1992) NBO Version 3.1

  67. Thatcher GRJ, Kluger R (1989) Adv Phys Org Chem 25:99

    Article  CAS  Google Scholar 

  68. Zhan C-G, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:1522–1530

    Article  CAS  Google Scholar 

  69. van Bochove MA, Bickelhaupt FM (2008) Eur J Org Chem 649–654

  70. van Bochove MA, Swart M, Bickelhaupt FM (2007) Chem Phys Chem 8:2452–2463

    Google Scholar 

  71. van Bochove MA, Swart M, Bickelhaupt FM (2006) J Am Chem Soc 128:10738–10744

    Article  Google Scholar 

  72. Kirby AJ, Manfredi AM, Souza BS, Medeiros M, Priebe JP, Brandão TAS, Nome F (2009) ARKIVOC. (iii):28–38

  73. Kirby AJ, Souza BS, Medeiros M, Priebe JP, Manfredi AM, Nome F (2008) Chem Commun 4428-4429

  74. Kirby AJ, Davies JE, Brandão TAS, da Silva PF, Rocha WR, Nome F (2006) J Am Chem Soc 128:12374–12375

    Article  CAS  Google Scholar 

  75. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, p 168

    Google Scholar 

  76. Raissi H, Jalbout AF, Farsi H, Abbasi B, De Leon A, Moghiminia S (2009) Int J Quantum Chem 109:1609–1616

    Article  CAS  Google Scholar 

  77. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  78. Popelier PLA, Bader RFW (1992) Chem Phys Lett 189:542–548

    Article  CAS  Google Scholar 

  79. Nowroozi A, Jalbout AF, Roohi H, Khalilinia E, Sadeghi M, De Leon A, Raissi H (2009) Int J Quantum Chem 109:1505–1514

    Article  CAS  Google Scholar 

  80. Howard ST (2000) J Am Chem Soc 122:8238–8244

    Article  CAS  Google Scholar 

  81. Simanenko YS, Popov AF, Prokop’eva TM, Savelova VA, Belousova IA (1994) Theor Exp Chem 30:61–64

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank DAE-BRNS, Mumbai, India for financial support of this work. One of the authors M.K.K. is thankful to UGC, New Delhi, India for awarding fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajit Ganguly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesharwani, M.K., Khan, M.A.S., Bandyopadhyay, T. et al. Solvolysis process of organophosphorus compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic fluoride with simple and α-nucleophiles: a DFT study. Theor Chem Acc 127, 39–47 (2010). https://doi.org/10.1007/s00214-009-0701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0701-2

Keywords

Navigation