Skip to main content
Log in

Implications of fast-time scale dynamics of human DNA/RNA cytosine methyltransferases (DNMTs) for protein function

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The role of protein dynamics in the control of substrate recognition, catalysis, and protein–protein interactions is often underestimated. Recently, a number of studies have examined the contribution of protein dynamics to the thermodynamics of ligand binding in detail, mostly using NMR relaxation measurements and molecular dynamics (MD) simulations. The results unequivocally demonstrate that conformational dynamics play a pivotal role in the properties and functions of proteins, and ignoring this contribution is likely to lead to substantial errors when explaining the biological function of proteins and in predictions of the binding affinities of their cognate ligands. However, the details of the interplay between structure and dynamics and the way it affects the biological function of the target protein remain poorly understood. In this study, the changes in fast (picosecond-to-nanosecond time scale) dynamics of catalytic domains of four human cytosine DNA methyltransferases (DNMTs) were studied using molecular dynamics (MD) simulations. The results provide insight into the protein dynamics changes that occur upon binding of the cofactor, S-adenosylmethionine (SAM). Contrary to expectations, increased amplitude of motions of backbone amide (N–H) and terminal heavy atom (C–C) bond vectors was observed in all studied DNMTs upon binding of SAM. These results imply that the cofactor binding causes a global increase in the extent of protein dynamics in the short time scale. This global dynamic change constitutes a favourable entropic contribution to the free energy of SAM binding. These results suggest that cytosine DNA methyltransferases may exploit changes in their fast scale dynamics to reduce the entropic cost of the substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song F, Mahmood S, Ghosh S, Liang P, Smiraglia DJ, Nagase H, Held WA (2009) Genomics 93(2):130–139

    Article  CAS  Google Scholar 

  2. Wilson IM, Davies JJ, Weber M, Brown CJ, Alvarez CE, MacAulay C, Schübeler D, Lam WL (2006) Cell Cycle 5(2):155–158

    CAS  Google Scholar 

  3. Smith LT, Otterson GA, Plass C (2007) Trends Genet 23(9):449–456

    Article  CAS  Google Scholar 

  4. Kanai Y (2008) Pathol Int 58(9):544–558

    Article  CAS  Google Scholar 

  5. Ehrlich M (2003) Clin Immunol 109(1):17–28

    Article  CAS  Google Scholar 

  6. Klebe G, Boehm HJ (1997) J Recept Sign Transduct Res 17(1–3):459–473

    Article  CAS  Google Scholar 

  7. Diehl C, Genheden S, Modig K, Ryde U, Akke M (2009) J Biomol NMR 45(1–2):157–169

    Article  CAS  Google Scholar 

  8. Dastidar SG, Lane DP, Verma CS (2008) J Am Chem Soc 130(41):13514–13515

    Article  CAS  Google Scholar 

  9. Fischer S, Verma CS (1999) Proc Natl Acad Sci USA 96(17):9613–9615

    Article  CAS  Google Scholar 

  10. Young L, Post CB (1996) Biochemistry 35(48):15129–15133

    Article  CAS  Google Scholar 

  11. Reddi AR, Guzman TR, Breece RM, Tierney DL, Gibney BR (2007) J Am Chem Soc 129(42):12815–12827

    Article  CAS  Google Scholar 

  12. Yin F, Cao R, Goddard A, Zhang Y, Oldfield E (2006) J Am Chem Soc 128(11):3524–3525

    Article  CAS  Google Scholar 

  13. MacRaild CA, Daranas AH, Bronowska A, Homans SW (2007) J Mol Biol 368(3):822–832

    Article  CAS  Google Scholar 

  14. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) J Biol Chem 280(14):13341–13348

    Article  CAS  Google Scholar 

  15. Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Nature 433(7022):128–132

    Article  CAS  Google Scholar 

  16. Showalter SA, Brüschweiler R (2007) J Am Chem Soc 129(14):4158–4159

    Article  CAS  Google Scholar 

  17. Stöckmann H, Bronowska A, Syme NR, Thompson GS, Kalverda AP, Warriner SL, Homans SW (2008) J Am Chem Soc 130(37):12420–12426

    Article  Google Scholar 

  18. Wong KB, Daggett V (1998) Biochemistry 37(32):11182–11192

    Article  CAS  Google Scholar 

  19. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM et al (2006) AMBER 8. University of California, San Francisco

    Google Scholar 

  20. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Design 14:123–134

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr et al (1998) Gaussian 98. Gaussian, Inc, Pittsburgh

    Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  23. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  24. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: structure. Funct Genet 3:712–725

    Article  Google Scholar 

  25. Markham GD, Norrby PO, Bock CW (2002) Biochemistry 41(24):7636–7646

    Article  CAS  Google Scholar 

  26. Pavelites JJ, Gao JL, Bash PA, Mackerell AD (1997) J Comput Chem 18:221–239

    Article  CAS  Google Scholar 

  27. Walker RC, de Souza MM, Mercer IP, Gould IR, Klug DR (2002) J Phys Chem B 106(44):11658–11665

    Article  CAS  Google Scholar 

  28. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2000) Current protocols in bioinformatics. Wiley, New York, pp 5.6.1–5.6.30

  29. Fiser A, Sali A (2003) Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  31. Amber 8 user manual (2004) http://ambermd.org/doc8/amber8.pdf

  32. Yang D, Kay LE (1996) J Mol Biol 263(2):369–382

    Article  CAS  Google Scholar 

  33. Lipari G, Szabo A (1982) J Am Chem Soc 104(17):4559–4570

    Article  CAS  Google Scholar 

  34. Best RB, Vendruscolo M (2004) J Am Chem Soc 126(26):8090–8091

    Article  CAS  Google Scholar 

  35. Meyer T, Ferrer-Costa C, Perez A, Rueda M, Bidon-Chanal A, Luque FJ, Laughton CA, Orozco M (2006) J Chem Theor Comp 2:251–258

    Article  CAS  Google Scholar 

  36. Callebaut I, Courvalin JC, Mornon JP (1999) FEBS Lett 446(1):189–193

    Article  CAS  Google Scholar 

  37. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) Nat Genet 25(3):338–342

    Article  CAS  Google Scholar 

  38. Sarraf SA, Stancheva I (2004) Mol Cell 15(4):595–605

    Article  CAS  Google Scholar 

  39. Shikauchi Y, Saiura A, Kubo T, Niwa Y, Yamamoto J, Murase Y, Yoshikawa H (2009) Mol Cell Biol 29:1944–1958

    Article  CAS  Google Scholar 

  40. Rountree MR, Bachman KE, Baylin SB (2000) Nat Genet 25(3):269–277

    Article  CAS  Google Scholar 

  41. Sankpal UT, Rao DN (2002) Crit Rev Biochem Mol Biol 37(3):167–197

    Article  CAS  Google Scholar 

  42. Wyszynski MW, Gabbara S, Kubareva EA, Romanova EA, Oretskaya TS, Gromova ES, Shabarova ZA, Bhagwat AS (1993) Nucleic Acids Res 21(2):295–301

    Article  CAS  Google Scholar 

  43. Swaminathan CP, Sankpal UT, Rao DN, Surolia A (2002) J Biol Chem 277(6):4042–4049

    Article  CAS  Google Scholar 

  44. Siedlecki P, Boy RG, Musch T, Brueckner B, Suhai S, Lyko F, Zielenkiewicz P (2006) J Med Chem 49(2):678–683

    Article  CAS  Google Scholar 

  45. Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E (2004) J Mol Biol 341(3):815–828

    Article  CAS  Google Scholar 

  46. Nardini M, Spanò S, Cericola C, Pesce A, Damonte G, Luini A, Corda D, Bolognesi M (2002) Acta Crystallogr D Biol Crystallogr 58(Pt 6 Pt 2):1068–1070

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by BBSRC (grant no. B19388 to AKB) and German Cancer Research Centre (DKFZ) funds. All calculations were performed on HPC clusters, University of Leeds. We are also grateful to Prof. Pavel Hobza and Prof. Steve Homans for helpful suggestions and comments. Special thanks to Prof. Alexander Suhai for his support and a lot of inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Katarzyna Bronowska.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 59 kb)

(TIFF 595 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, D.A., Bronowska, A.K. Implications of fast-time scale dynamics of human DNA/RNA cytosine methyltransferases (DNMTs) for protein function. Theor Chem Acc 125, 407–418 (2010). https://doi.org/10.1007/s00214-009-0681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0681-2

Keywords

Navigation