Skip to main content
Log in

Dual-level direct dynamics studies on the reactions of tetramethylsilane with chlorine and bromine atoms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The multiple-channel reactions Cl + Si(CH3)4 and Br + Si(CH3)4 are investigated by direct dynamics method. The minimum energy path is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD (single-point) method. The rate constants for individual reaction channel are calculated by the improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200–3,000 K. The theoretical three-parameter expression k 1(T) = 9.97 × 10−13 T 0.54exp(613.22/T) and k 2(T) = 1.16 × 10−17 T 2.30exp(−3525.88/T) (in unit of cm3 molecule−1 s−1) are given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smaller barrier height among feasible channels considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood G (2000) The mechanisms of atmospheric oxidation of the alkenes. Oxford, New York

  2. Calvert JG, Atkinson R, Becker KH, Kamens RH, Seinfeld JH, Wallington TJ, Yarwood G (2002) The mechanisms of atmospheric oxidation of the aromatic hydrocarbons. Oxford, New York

  3. Zhang H, Zhang GL, Wang Y, Yu XY, Liu B, Liu JY, Li ZS (2008) Theo Chem Acc 119:319

    Article  CAS  Google Scholar 

  4. Goumri A, Yuan J, Hommel EL, Marshall P (2003) Chem Phys Lett 375:149

    Article  CAS  Google Scholar 

  5. Atkinson R (1991) Environ Sci Technol 25:863

    Article  CAS  Google Scholar 

  6. Sommerlade R, Parlar H, Wrobel D, Kochs P (1993) Environ Sci Technol 27:2435

    Article  CAS  Google Scholar 

  7. Tuazon EC, Aschmann SM, Atkinson R (2000) Environ Sci Technol 34:1970

    Article  CAS  Google Scholar 

  8. Bell RL, Truong TN (1994) J Chem Phys 101:10442

    Article  CAS  Google Scholar 

  9. Truong TN, Duncan WT, Bell RL (1996) Chemical applications of density functional theory. American Chemical Society, Washington, DC, p 85

  10. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, The Netherlands, p 229

  11. Corchado JC, Espinosa-Garcia J, Hu W-P, Rossi I, Truhlar DG (1995) J Phys Chem 99:687

    Article  CAS  Google Scholar 

  12. Hu W-P, Truhlar DG (1996) J Am Chem Soc 118:860

    Article  CAS  Google Scholar 

  13. Fast PL, Truhlar DG (2000) J Phys Chem A 104:6111

    Article  CAS  Google Scholar 

  14. Corchado JC, Chuang Y-Y, Fast PL, Villa J, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Ramos AF, Pu J, Albu TV (2002) POLYRATE version 9.1. Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota

    Google Scholar 

  15. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440

    Article  CAS  Google Scholar 

  16. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, FL, p 65

    Google Scholar 

  17. Duncan WT, Truong TN (1995) J Chem Phys 103:9642

    Article  CAS  Google Scholar 

  18. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  19. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh, PA

  21. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730

    Article  CAS  Google Scholar 

  22. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235

    Article  CAS  Google Scholar 

  23. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  24. Truhlar DG (1991) J Comput Chem 12:266

    Article  CAS  Google Scholar 

  25. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221

    Article  CAS  Google Scholar 

  26. Kuchitsu K (1998) In: Structure of free polyatomic molecules basic data, vol 1. Springer, Berlin, p 104

  27. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release, Data compiled by K. P. Huber and G. Herzberg

  28. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release, Vibrational frequency date compiled by Coblentz Society, Inc

  29. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release, Vibrational frequency date compiled by T. Shimanouchi

  30. Chase MW Jr, Davies CA, Downey JR, Fryrip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables. Ref Data 14(Suppl 1):1

    Google Scholar 

  31. Chase MW (1998) NIST-JANAF themochemical tables. J Phys Chem Ref Data Monograph 9:1–1951

    Google Scholar 

  32. Hammond GS (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  33. Ding L, Marshall P (1992) J Am Chem Soc 114:5754

    Article  CAS  Google Scholar 

  34. Ferguson KC, Okafo EN, Whittle E (1973) J Chem Soc Faraday Trans 1(69):295

    Google Scholar 

  35. Zhang H, Zhang GL, Liu JY, Miao S, Liu B, Li ZS (2009) J Comput Chem 30:236

    Article  Google Scholar 

  36. Zhang H, Zhang GL, Liu JY, Liu CY, Liu B, Li ZS (2009) Theor Chem Acc 122:107

    Article  CAS  Google Scholar 

  37. Phillips JA, Cramer CJ (2007) J Phys Chem B 111:1408

    Article  CAS  Google Scholar 

  38. Zhang H, Zhang GL, Wang Y, Yu XY, Liu B, Liu JY, Li ZS (2008) Theor Chem Acc 119:319

    Article  CAS  Google Scholar 

  39. Lynch BJ, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:1643

    Article  CAS  Google Scholar 

  40. Walsh R (1992) In: Martinho Simões JA (ed) Energetica of organometallic species; NATO-ASI Series C, 367. Kluwer, Dordrecht (Chap 11)

Download references

Acknowledgments

The authors thank Professor Donald G. Truhlar for providing POLYRATE 9.1 program. This work is supported by the National Natural Science Foundation of China (20333050, 20303007, 50743013, and 20973049), the Program for New Century Excellent Talents in University (NCET), the Key subject of Science and Technology by the Ministry of Education of China, the Key subject of Science and Technology by Jilin Province, the Foundation for University Key Teacher by the Department of Education of Heilongjiang Province (1152G010), the SF of Graduate Innovation by Department of Education of Heilongjiang province (YJSCX2009-055HLJ), the SF for Postdoctoral of HLJ province (LBH-Q07058), and Natural Science Foundation of Heilongjiang Province (B200605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, Gl., Liu, Jy. et al. Dual-level direct dynamics studies on the reactions of tetramethylsilane with chlorine and bromine atoms. Theor Chem Acc 125, 75–82 (2010). https://doi.org/10.1007/s00214-009-0664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0664-3

Keywords

Navigation