Skip to main content
Log in

Zwitterionic structures of strained cis-pyramidalized disilenes: fact or artifact

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A series of cis-pyramidalized disilenes was modeled by ab initio and DFT methods with the special emphasis on character of the wavefunction. Spin restricted DFT (RDFT) and MP2 approaches predicted qualitatively different structures of disilenes as the minima (deformed zwitterionic and symmetrical diradicaloid, respectively). Additional CASSCF and broken symmetry spin unrestricted DFT (BS-UDFT) calculations confirmed symmetrical structures as more reliable minimum. The only exception is highly strained 1,4-disilabicyclo[2.2.0]hex-1,4-ene where deformed zwitterionic structure is corroborated by most of the applied methods including high-level MR-AQCC calculation. Analysis of the wavefunction obtained for both deformed and symmetrical minima indicates a strong tendency of the RDFT method to prefer structures possessing a closed shell wavefunction even though a strong electron density shift occurs. The results obtained at CASSCF level of theory showed that for a correct description of geometries of such systems, a two-configurational wavefunction is needed at least. The BS-UDFT and spin restricted MP2 methods describe such “diradicaloid” geometries of cis-pyramidalized disilenes qualitatively correct although from different reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

Notes

  1. The disilene 2 was also optimized by B3LYP and MP2 approaches using 6-311+G(d,p) basis set. The optimization resulted with very similar structures to those obtained with 6-31G(d) basis set indicating very weak basis set effect on geometrical parameters.

References

  1. Roark DN, Peddle GJ (1972) J Am Chem Soc 94:5837

    Article  CAS  Google Scholar 

  2. Apeloig Y (1989) In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds. Wiley, New York, p 57 (Chapter 2)

  3. Tsumuraya T, Batcheller SA, Masamune S (1991) Angew Chem Int Ed 30:902

    Article  Google Scholar 

  4. Driess M, Grützmacher H (1996) Angew Chem Int Ed 35:828

    Article  CAS  Google Scholar 

  5. Nakadaira Y, Kobayashi T, Otsuka T, Sakurai H (1979) J Am Chem Soc 101:486

    Article  CAS  Google Scholar 

  6. Sakurai H, Nakadaira Y, Kobayashi T (1979) J Am Chem Soc 101:487

    Article  CAS  Google Scholar 

  7. West R, Fink J, Michl J (1981) Science 214:1343

    Article  CAS  Google Scholar 

  8. Karni M, Apeloig Y (2005) Chem Isr 19:22 (and references cited therein)

    CAS  Google Scholar 

  9. A general review of the field can be found in: Rappoport Z, Apeloig Y (eds) (1998) (2001) The chemistry of organic silicon compounds, vols 2 and 3. Wiley, Chichester; Rappoport Z (ed) (2002) The chemistry of organic germanium, tin and lead compounds, vol 2. Wiley, Chichester

  10. Kobayashi H, Iwamoto T, Kira M (2005) J Am Chem Soc 127:15376

    Article  CAS  Google Scholar 

  11. Kira M, Ohya S, Iwamoto T, Ichinohe M, Kabuto C (2000) Organometallics 19:1817

    Article  CAS  Google Scholar 

  12. Vazquez S, Camps P (2005) Tetrahedron 61:5147

    Article  CAS  Google Scholar 

  13. Margetić D, Williams RW, Warrener RN (2003) J Org Chem 68:9186

    Article  CAS  Google Scholar 

  14. Margetić D, Warrener RN, Eckert-Maksić M, Antol I, Glasovac Z (2003) Theor Chem Acc 198:182

    Google Scholar 

  15. Antol I, Eckert-Maksić M, Margetić D, Maksić ZB, Kowski K, Rademacher P (1998) Eur J Org Chem 1403

  16. Antol I, Glasovac Z, Eckert-Maksić M (2004) New J Chem 28:880

    Article  CAS  Google Scholar 

  17. Trinquier G, Malrieu JP (1987) J Am Chem Soc 109:5303

    Article  CAS  Google Scholar 

  18. Trinquier G, Malrieu JP (1990) J Phys Chem 94:6184

    Article  CAS  Google Scholar 

  19. Carter EA, Goddard WA III (1986) J Phys Chem 90:998

    Article  CAS  Google Scholar 

  20. Carter EA, Goddard WA III (1988) J Chem Phys 88:1752

    Article  CAS  Google Scholar 

  21. Pauling L (1983) Proc Natl Acad Sci USA 80:3871

    Article  CAS  Google Scholar 

  22. Jacobsen H, Ziegler T (1994) J Am Chem Soc 116:3667

    Article  CAS  Google Scholar 

  23. Liang C, Allen LC (1990) J Am Chem Soc 112:1039

    Article  CAS  Google Scholar 

  24. Schultz PA, Messmer RP (1993) J Am Chem Soc 115:10925 10938, 10945

    Article  CAS  Google Scholar 

  25. Takahashi M, Tsutsui S, Sakamoto K, Kira M, Müller T, Apeloig Y (2001) J Am Chem Soc 123:347

    Article  CAS  Google Scholar 

  26. Teramae H (1987) J Am Chem Soc 109:4140

    Article  CAS  Google Scholar 

  27. Breher F (2007) Coord Chem Rev 251:1007

    Article  CAS  Google Scholar 

  28. Schmedake TA, Haaf M, Apeloig Y, Müller T, Bukalov S, West R (1999) J Am Chem Soc 121:9479

    Google Scholar 

  29. Matsumoto S, Tsutsui S, Kwon E, Sakamoto K (2004) Angew Chem Int Ed 43:410

    Article  CAS  Google Scholar 

  30. Kobayashi K, Nagase S (1997) Organometallics 16:2489

    Article  CAS  Google Scholar 

  31. Williams RW, Colvin ME, Tran N, Warrener RN, Margetić D (2000) J Org Chem 65:562

    Article  CAS  Google Scholar 

  32. Fernandez JA, Vazquez S (2007) Eur J Org Chem 4493

  33. Margetić D, Vazdar M, Eckert-Maksić M (2005) Internet Electron J Mol Design 4:647

    Google Scholar 

  34. Ottosson H (2003) Chem Eur J 9:4144

    Article  CAS  Google Scholar 

  35. Cremer D (2001) Mol Phys 99:1899

    Article  CAS  Google Scholar 

  36. Gräfenstein J, Cremer D (2000) Phys Chem Chem Phys 2:2091

    Article  Google Scholar 

  37. Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360

    Article  Google Scholar 

  38. Neese F (2004) J Phys Chem Sol 65:781 (and references cited therein)

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh

    Google Scholar 

  40. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  41. Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller Th, Szalay PG, Brown FB, Ahlrichs R, Böhm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P (2006) COLUMBUS, an ab initio electronic structure program, release 5.9.1. http://www.univie.ac.at/columbus

  42. Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quantum Chem Quantum Chem Symp 15:91

    CAS  Google Scholar 

  43. Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhao J (1988) Int J Quantum Chem Quantum Chem Symp 22:149

    Article  CAS  Google Scholar 

  44. Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Müller Th, Szalay PG, Seth M, Kedziora GS, Yabushita S, Zhang Z (2001) Phys Chem Chem Phys 3:664

    Article  CAS  Google Scholar 

  45. Helgaker T, Jensen HJAa, Jørgensen P, Olsen J, Ruud K, A¡gren H, Andersen T, Bak KL, Bakken V, Christiansen O, Dahle P, Dalskov EK, Enevoldsen T, Heiberg H, Hettema H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Saue T, Taylor PR (1997) Vahtras O DALTON, an ab initio electronic structure program, release 1.0

  46. Schaftenaar G, Noordik JH (2000) J Comp Aided Mol Des 14:123

    Article  CAS  Google Scholar 

  47. Oliva JM, Serrano-Andres L, Havlas Z, Michl J (2009) J Mol Struct Theochem 912:13. doi:10.1016/j.theochem.2009.01.033

    Google Scholar 

  48. Calculated Si–Si bond length in disilane at similar levels of theory is 2.34–2.36 Å, see: Valencia F, Romero AH, Kiwi M, Ramírez R, Toro-Labbé A (2003) Chem Phys Lett 371:267; Cho SG, Rim OK, Park GS (1997) J Comput Chem 18:1523

  49. Antol I, Eckert-Maksić M, Lischka H, Maksić ZB (2007) Eur J Org Chem 3173

  50. Eckert-Maksić M, Antol I, Margetić D, Glasovac Z (2002) J Chem Soc Perkin Trans 2:2057

    Google Scholar 

  51. Can H, Zahn M, Balci M, Brickmann J (2003) Eur J Org Chem 1111

  52. Singh A, Ganguly B (2007) J Phys Chem A 111:6468

    Google Scholar 

  53. Cremer D, Gauss J, Kraka E, Stanton JF, Bartlett RJ (1993) Chem Phys Lett 209:547

    Article  CAS  Google Scholar 

  54. Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the Ministry of Science, Education and Sport of Croatia through projects Nos. 098-0982933-2920 and 098-0982933-3218 is greatly acknowledged. We would also like to thank the Computing Center of the University of Zagreb (SRCE) for allocation of computer time on the Isabella cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Glasovac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasovac, Z., Antol, I., Vazdar, M. et al. Zwitterionic structures of strained cis-pyramidalized disilenes: fact or artifact. Theor Chem Acc 124, 421–430 (2009). https://doi.org/10.1007/s00214-009-0633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0633-x

Keywords

Navigation