Skip to main content
Log in

Excess charge delocalization in organic and biological molecules: some theoretical notions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical and computational investigations of the excess charge distribution (ECD) in molecular complexes have attracted considerable attention as ECD is closely related to electronic properties of organic semiconductors, such as the efficiency of photoinduced charge separation in organic solar cells and charge transport in DNA and proteins. In this paper, we analyze the ECD in several representative models on the basis of ab initio and DFT calculations. We consider how changes in the reorganization energy, electronic coupling and charge transfer energy affect the ECD in the systems. In particular, we compare ECD in π stacks of polycyclic aromatic hydrocarbons and DNA nucleobases. While the π interaction between subunits in the systems is similar in both cases, ECD is quite different: the excess charge is found to be completely delocalized over the hydrocarbon stacks but strongly confined to a single nucleobase in DNA stacks. We also discuss the effects of conformational fluctuations on ECD in the stacks. Finally, ECD in amino acids and its dependence on the conformational changes are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coropceanu V, Cornil J, Filho DA, Olivier Y, Silbey R, Bredas JL (2006) Chem Rev 106:926

    Google Scholar 

  2. Walzer K, Maennig B, Pfeiffer M, Leo K (2006) Chem Rev 106:1233

    Google Scholar 

  3. Shirota Y, Kageyama H (2007) Chem Rev 107:953

    Article  CAS  Google Scholar 

  4. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  5. Shuster GB (2004) Long-range charge transfer in DNA. In: Topics in current chemistry, vols. 236–237. Springer, Berlin

  6. Ratner MA (2002) Mater Today 5(2):20

    Article  CAS  Google Scholar 

  7. Ratner MA, Jortner J (1997) Molecular electronics. Marcel-Dekker, New York

    Google Scholar 

  8. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971

    Article  CAS  Google Scholar 

  9. Bredas JL, Calbert JP, DAdS Filho, Cornil J (2002) Proc Natl Acad Sci USA 99:5804

    Article  CAS  Google Scholar 

  10. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  11. Newton MD (1991) Chem Rev 91:767

    Article  CAS  Google Scholar 

  12. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  13. Olofsson J, Larsson S (2001) J Phys Chem B 105:10398

    Article  CAS  Google Scholar 

  14. Voityuk AA (2005) J Phys Chem B 109:10793

    Article  CAS  Google Scholar 

  15. Parson WW, Chu ZT, Warshel A (1998) Biophys J 74:182

    Article  CAS  Google Scholar 

  16. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  17. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  18. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  19. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  20. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  21. Blancafort L, Voityuk AA (2006) J Phys Chem A 110:6426

    Article  CAS  Google Scholar 

  22. Blancafort L, Voityuk AA (2007) J Phys Chem A 111:4714

    Article  CAS  Google Scholar 

  23. Frisch MJ et al (2008) Gaussian 03E. Gaussian, Pittsburgh

    Google Scholar 

  24. Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  25. Adamowicz L (1993) J Phys Chem 97:11122

    Article  Google Scholar 

  26. Al-Jihan I, Smets J, Adamowicz L (2000) J Phys Chem 104:2994

    Google Scholar 

  27. Li X, Cai Z, Sevilla MD (2002) J Phys Chem A 106:1596

    Article  CAS  Google Scholar 

  28. Voityuk AA (2005) J Chem Phys 123:034903

    Article  Google Scholar 

  29. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891

    Article  CAS  Google Scholar 

  30. Sanchez-Carrera RS, Coropceanu V, da Silva DA, Friedlein R, Osikowicz W, Murdey R, Suess C, Salaneck WR, Bredas JL (2006) J Phys Chem B 110:18904

    Article  CAS  Google Scholar 

  31. Coropceanu V, Malagoli M, da Silva DA, Gruhn NE, Bill TG, Bredas JL (2002) Phys Rev Lett 89:275503

    Article  CAS  Google Scholar 

  32. Datta A, Mohakud S, Pati SK (2007) J Chem Phys 126:144710

    Article  Google Scholar 

  33. Hajgató B, Deleuze MS, Tozer DJ, De Proft F (2008) J Chem Phys 129:084308

    Article  Google Scholar 

  34. Chesterfield RJ, McKeen JC, Newton CR, Ewbank PC, Da Silva Filho DA, Bredas JL, Miller LL, Mann KR, Frisbie CD (2004) J Phys Chem B 108:19281

    Article  CAS  Google Scholar 

  35. Mas-Torrent M, Hadley P, Bromley ST, Ribas X, Tarres J, Mas M, Molins E, Veciana J, Rovira C (2004) J Am Chem Soc 126:8546

    Article  CAS  Google Scholar 

  36. Felix M, Voityuk AA (2008) J Phys Chem A 112:9043

    Article  CAS  Google Scholar 

  37. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) J Am Chem Soc 129:3842

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Phys Chem Chem Phys 10:2813

    Article  CAS  Google Scholar 

  39. Voityuk AA, Duran M (2008) J Phys Chem C 112:1672

    Article  CAS  Google Scholar 

  40. Conwell EM, Bloch SM, McLaughlin PM, Basko DM (2007) J Am Chem Soc 129:9175

    Article  CAS  Google Scholar 

  41. Clowney L, Jain SC, Srinivasan AR, Westbrook J, Olson WK, Berman HW (1996) J Am Chem Soc 118:509

    Article  CAS  Google Scholar 

  42. Besler BH, Merz KM, Kollman PA (1990) J Comp Chem 11:431

    Article  CAS  Google Scholar 

  43. Gil A, Simon S, Rodríguez-Santiago L, Bertrán J, Sodupe M (2007) J Chem Theory Comput 3:2210

    Article  CAS  Google Scholar 

  44. Gil A, Simon S, Sodupe M, Bertrán J (2008) Chem Phys Lett 451:276

    Article  CAS  Google Scholar 

  45. Sodupe M, Bertrán J, Rodríguez-Santiago L, Baerends EJ (1999) J Phys Chem A 103:166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Spanish Ministerio de Educación y Ciencia Projects no. CTQ2005-04563, CTQ2005-08797-C02 and CTQ2008-03077/BQU. J.P. thanks the MEC for the Ramón y Cajal contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Voityuk.

Additional information

Dedicated to Professor Santiago Olivella on the occasion of his 65th birthday and published as part of the Olivella Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blancafort, L., Duran, M., Poater, J. et al. Excess charge delocalization in organic and biological molecules: some theoretical notions. Theor Chem Acc 123, 29–40 (2009). https://doi.org/10.1007/s00214-009-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0538-8

Keywords

Navigation