Skip to main content
Log in

A numerical method for computing dispersion constants

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We reformulate and discuss a previously proposed variational numerical technique for the computation of dispersion coefficients. The method extends the Full CI idea to the perturbation equation for the intermolecular interaction, by expanding the perturbative solution in a small number of tensor products of suitably chosen Full CI vectors. Some new expansion vectors are proposed and their convergence properties are tested by performing computations on HF and H2O. Last, a natural state analysis of the solution is performed via an orthogonal transformation of the original expansion vectors and it is found that a single couple of natural states strongly dominates the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. London F, Physik Z (1930) Chem Abstr B 11:222–251

    CAS  Google Scholar 

  2. Eisenschitz R, London F, Physik Z (1930) Chem Abstr B 60:491

    Google Scholar 

  3. Stone AJ (2002) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  4. Magnasco V, McWeeny R (1991) Theoretical models of chemical bonding, Part 4. In: Maksic ZB (ed) Springer, Berlin, pp 133–169

  5. Amos RD, Handy NC, Knowles PJ, Rice JE, Stone AJ (1985) J Phys Chem 98:2186–2192

    Article  Google Scholar 

  6. Rijks W, Wormer PES (1988) J Chem Phys 88:5704–5714

    Article  CAS  Google Scholar 

  7. Bendazzoli GL, Evangelisti S (2001) Adv in Quantum Chem 39:189–207

    Article  CAS  Google Scholar 

  8. Langhoff PW, Karplus M (1970) The Padé approximants in theoretical physics. In: Baker GA, Gammel JL (eds) Chap 2. Academic Press, New York

  9. Figari G, Magnasco V (2003) Chem Phys Lett 374:527–533

    Article  CAS  Google Scholar 

  10. Bendazzoli GL (2005) Int J Quantam Chem 104:38–51

    Article  CAS  Google Scholar 

  11. Rossi E, Bendazzoli GL, Evangelisti S, Maynau D (1999) Chem Phys Lett 310:530–536

    Article  CAS  Google Scholar 

  12. Li JR, White J (2004) SIAM Rev 46:693–713

    Article  Google Scholar 

  13. Robinson PD (1969) J Phys A 2:193–199

    Article  Google Scholar 

  14. Monari A, Bendazzoli GL, Evangelisti S, Angeli C, Ben Amor N, Borini S, Maynau D, Rossi E (2007) J Chem Theory Comput 3:477–485

    Article  CAS  Google Scholar 

  15. Bendazzoli GL, Monari A, Figari G, Rui M, Costa C, Magnasco V (2008) Chem Phys Lett 450:396–399

    Article  CAS  Google Scholar 

  16. Bendazzoli GL (2007) Theor Chem Acc 118:135–142

    Article  CAS  Google Scholar 

  17. Benkova Z, Sadlej AJ, Oakes RE, Bell SE (2005) J Comput Chem 26:145–153

    Article  CAS  Google Scholar 

  18. Rijks W, Wormer PES (1989) J Chem Phys 90:6507–6519

    Article  CAS  Google Scholar 

  19. Wormer PES, Hettema H (1992) J Chem Phys 97:5592–5606

    Article  CAS  Google Scholar 

  20. Osinga VP, van Gisbergen SJA, Sniders JG, Baerends EJ (1997) J Chem Phys 106:5091–5101

    Article  CAS  Google Scholar 

  21. Kutzelnigg W, Maeder F (1978) Chem Phys 32:451–455

    Article  CAS  Google Scholar 

  22. Maeder F, Kutzelnigg W (1978) Chem Phys 32:457–469

    Article  CAS  Google Scholar 

  23. Kutzelnigg W, Maeder F (1978) Chem Phys 35:397–405

    Article  CAS  Google Scholar 

  24. Maeder F, Kutzelnigg W (1979) Chem Phys 42:95–112

    Article  CAS  Google Scholar 

  25. Penzl T (2000) Syst Control Lett 40:139–144

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the University of Bologna and the italian Ministry of University and Research under the project “PRIN 2006, Molecular Quantum Mechanics: Computational Methods and Analysis of Novel Phenomena" is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luigi Bendazzoli.

Additional information

Dedicated to the memory of Professor Oriano Salvetti and published as part of the Salvetti Memorial Issue.

Appendices

Appendix 1

Strictly speaking, Eq. 1 has an infinity of solutions, since to any given solution Φ AB1ab we can add products of the type Φ A0 f B and g A Φ B0 , where f B and g A are arbitrary functions, and get another solution. The dispersion solution is characterized by a kind of strong orthogonality to the ground state eigenvectors of molecule A and B, as clearly shown by the London sum-over-states representation given in Eq. 2:

$$ \int\limits_A \Upphi^{AB}_{1 a b} \Upphi_{0}^{A} dV_A =\int\limits_B \Upphi^{AB}_{1 a b} \Upphi_{0}^{B} dV_B=0 $$

Equivalently, we can define Φ AB1ab to be the solution of minimal norm of Eq. 1. As far as Eq. 11 is concerned, one has the conditions:

$$ {{\mathbf{v}}}_{0}^{A} {{\mathbf{X}}}={{\mathbf{0}}}^{B}={{\mathbf{0}}}, \quad {{\mathbf{X}}}({{\mathbf{v}}}_{0}^{B} )^T= ({{\mathbf{0}}}^A)^T $$

where v A0 , v B0 are the Full CI ground state eigenvectors of molecule A, B, respectively, and 0 A, 0 B are zero vectors. Consequently, the expansion vectors should fulfill the orthogonality requirements:

$$ ({{\mathbf{z}}}_{i}^{A})^T {{\mathbf{v}}}_{0}^{A}=({{\mathbf{z}}}_{j}^{B})^T {{\mathbf{v}}}_{0}^{B}=0. $$

Appendix 2

For reader’s convenience we report here the explicit formulae used to compute the dispersion coefficients from the cartesian matrix elements:

$$ \begin{aligned} C_{6}^{00000}& = {\frac{2}{3}} \left[\langle xx|xx \rangle_\otimes + \langle xy|xy \rangle_\otimes + \langle xz|xz \rangle_\otimes \right. \\ &\quad\left. + \langle yx|yx \rangle_\otimes + \langle yy|yy \rangle_\otimes + \langle yz|yz \rangle_\otimes\right.\\ &\quad\left. + \langle zx|zx \rangle_\otimes + \langle zy|zy \rangle_\otimes + \langle zz|zz \rangle_\otimes \right] \\ C_{6}^{20002} = & -{\frac{\sqrt{5}}{3}} \left[\langle xx|xx \rangle_\otimes + \langle xy|xy \rangle_\otimes + \langle xz|xz \rangle_\otimes \right. \\ &\quad\left. + \langle yx|yx \rangle_\otimes + \langle yy|yy \rangle_\otimes \langle yz|yz \rangle_\otimes \right. \\ &\quad \left.-2( \langle zx|zx \rangle_\otimes + \langle zy|zy \rangle_\otimes + \langle zz|zz \rangle_\otimes) \right] \\ C_{6}^{22002} = & \sqrt{{\frac{5}{6}}} \left[\langle xx|xx \rangle_\otimes + \langle xy|xy \rangle_\otimes + \langle xz|xz \rangle_\otimes \right.\\ &\quad \left. - (\langle yx|yx \rangle_\otimes + \langle yy|yy \rangle_\otimes + \langle yz|yz \rangle_\otimes) \right] \cr C_{6}^{22224} = & {\frac{27}{\sqrt{70}}} \left[ \langle xx|xx \rangle_\otimes - \langle xy|xy \rangle_\otimes - \langle yx|yx \rangle_\otimes + \langle yy|yy \rangle_\otimes \right] \end{aligned} $$

in the notation defined by Eq. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendazzoli, G.L., Monari, A. & Evangelisti, S. A numerical method for computing dispersion constants. Theor Chem Acc 123, 265–272 (2009). https://doi.org/10.1007/s00214-009-0520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0520-5

Keywords

Navigation