Skip to main content
Log in

Magnetotropicity of five-membered heterocyclic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ab initio methods have been employed to obtain models for the current density field induced in the electrons of pentatomic cyclic molecules C4H4X, with X = CH2, NH, O, S, PH, and AsH, in the presence of a static, homogeneous magnetic field normal to the plane containing the four ring carbon atoms. These models are expected to provide simple and valid tools to assess the magnetotropism of these compounds and to interpret their magnetic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein HJ, Schneider WG, Pople JA (1956) . Proc Roy Soc (London) A 236:515

    CAS  Google Scholar 

  2. Pople JA (1956) . J Chem Phys 24:1111

    Article  CAS  Google Scholar 

  3. McWeeny R (1958) . Mol Phys 1:311

    Article  CAS  Google Scholar 

  4. Pauling L (1936) . J Chem Phys 4:673

    Article  CAS  Google Scholar 

  5. Lonsdale K (1937) . Proc Roy Soc (London) A 159:149

    Article  CAS  Google Scholar 

  6. London F (1937) J Phys Radium 8:397, 7ème Série

    Google Scholar 

  7. London F (1937) . C R Acad Sci (Paris) 205:28

    CAS  Google Scholar 

  8. London F (1937) . J Chem Phys 5:837

    Article  CAS  Google Scholar 

  9. Lazzeretti P (2000) Ring currents. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol. 36. Elsevier, pp 1–88

  10. von Ragué Schleyer P (2001) Chem Rev 101:1115, and articles therein

  11. Gomes JANF, Mallion RB (2001) . Chem Rev 101:1349

    Article  CAS  Google Scholar 

  12. Randić M (2003) . Chem Rev 103:3449

    Article  CAS  Google Scholar 

  13. von Ragué Schleyer P (2005) Chem Rev 105:3433, and articles therein

  14. Lazzeretti P, Zanasi R (1981) . Chem Phys Lett 80:533

    Article  CAS  Google Scholar 

  15. Lazzeretti P, Zanasi R (1982) . J Chem Phys 77:3129

    Article  CAS  Google Scholar 

  16. Lazzeretti P, Rossi E, Zanasi R (1982) . Nuovo Cimento 1D:70

    Article  Google Scholar 

  17. Ligabue A, Soncini A, Lazzeretti P (2002) . J Am Chem Soc 124:2008

    Article  CAS  Google Scholar 

  18. Musher JI (1966) Theory of the chemical shift. In: Waugh JS (ed) Advances in magnetic resonance, vol. 2. Academic, New York, pp 177–224

    Google Scholar 

  19. Fleischer U, Kutzelnigg W, Lazzeretti P, Mühlenkamp V (1994) . J Am Chem Soc 116:5298

    Article  CAS  Google Scholar 

  20. Keith TA, Bader RFW (1993) . Chem Phys Lett 210:223

    Article  CAS  Google Scholar 

  21. Bader RFW, Keith TA (1993) . J Chem Phys 99:3683

    Article  CAS  Google Scholar 

  22. Gomes JANF (1983) . J Chem Phys 78:4585

    Article  CAS  Google Scholar 

  23. Gomes JANF (1983) . Phys Rev A 28:559

    Article  CAS  Google Scholar 

  24. Gomes JANF (1983) . J Mol Struct (THEOCHEM) 93:111

    Article  Google Scholar 

  25. Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006) . Phys Rev A 74:012506

    Article  CAS  Google Scholar 

  26. Johansson MP, Jusélius J (2005) . Lett Org Chem 2:469

    Article  CAS  Google Scholar 

  27. Jameson CJ, Buckingham AD (1979) . J Phys Chem 83:3366

    Article  CAS  Google Scholar 

  28. Jameson CJ, Buckingham AD (1980) . J Chem Phys 73:5684

    Article  CAS  Google Scholar 

  29. Lazzeretti P, Zanasi R (1983) . Chem Phys Lett 100:67

    Article  CAS  Google Scholar 

  30. Ferraro MB, Lazzeretti P, Viglione RG, Zanasi R (2004) . Chem Phys Lett 390:268

    Article  CAS  Google Scholar 

  31. Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005) . Chem Phys Lett 401:164

    Article  CAS  Google Scholar 

  32. Pelloni S, Ligabue A, Lazzeretti P (2004) . Org Lett 6:4451

    Article  CAS  Google Scholar 

  33. Ferraro MB, Faglioni F, Ligabue A, Pelloni S, Lazzeretti P (2005) . Magn Res Chem 43:316

    Article  CAS  Google Scholar 

  34. von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) . J Am Chem Soc 118:6317

    Article  Google Scholar 

  35. Cyrański M, Krygowski TM, Katrizky AR, von Ragué Schleyer P (2002) . J Org Chem 67:1333

    Article  CAS  Google Scholar 

  36. Wannere CS, Corminboeuf C, Allen WD, Schaefer HF III, von Ragué Schleyer P (2005) . Org Lett 7:1457

    Article  CAS  Google Scholar 

  37. Chesnut DB (1998) . Chem Phys 231:1

    Article  CAS  Google Scholar 

  38. Chesnut DB, Bartolotti LJ (2000) . Chem Phys 253:1

    Article  CAS  Google Scholar 

  39. Cyrański M, von Ragué Schleyer P, Krygowski TM, Jiao H, Hohlneicher G (2003) . Tetrahedron 59:1637

    Google Scholar 

  40. Collard K, Hall GG (1977) . Int J Quantum Chem XII:623

    Article  Google Scholar 

  41. Keith TA, Bader RFW (1993) . J Chem Phys 99:3669

    Article  CAS  Google Scholar 

  42. If the eigenvalues are complex one defines the signature as the difference between the number of eigenvalues having a positive real part and the number of eigenvalues having a negative real part

  43. Gomes JANF (1983) . J Chem Phys 78:3133

    Article  CAS  Google Scholar 

  44. Coddington EA, Levinson N (1955) Theory of ordinary differential equations. Mc Graw–Hill, New York

    Google Scholar 

  45. Hirschfelder JO (1977) . J Chem Phys 67:5477

    Article  CAS  Google Scholar 

  46. Hamermesh M (1972) Group theory and its applications to physical problems. Addison-Wesley, London

    Google Scholar 

  47. van Duijneveldt FB (1971) Gaussian basis sets for the atoms H-Ne for use in molecular calculations. Research Report RJ 945, IBM

  48. Pelloni S, Faglioni F, Soncini A, Ligabue A, Lazzeretti P (2003) . Chem Phys Lett 375:583

    Article  CAS  Google Scholar 

  49. McLean AD, Chandler GS (1980) . J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  50. Woon DE, Dunning TH, Jr (1993) . J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  51. Frisch MJ et al (1998) Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh

  52. Lazzeretti P, Malagoli M, Zanasi R (1994) . Chem Phys Lett 220:299

    Article  CAS  Google Scholar 

  53. Lazzeretti P (2003) Electric, magnetic properties of molecules. In: Wilson S (ed) Handbook of molecular physics, quantum chemistry, Vol. 3, Part 1, Chap. 3. Wiley, Chichester, pp 53–145

  54. Coriani S, Lazzeretti P, Malagoli M, Zanasi R (1994) . Theor Chim Acta 89:181

    Article  CAS  Google Scholar 

  55. Zanasi R (1996) . J Chem Phys 105:1460

    Article  CAS  Google Scholar 

  56. Soncini A, Lazzeretti P, Zanasi R (2006) . Chem Phys Lett 421:21

    Article  CAS  Google Scholar 

  57. Parker TS, Chua LO (1986) Practical numerical algorithms for chaotic systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  58. The LINUX and WINDOWS versions of the graphic code used to obtain three-dimensional representations of the stagnation graph and current density vector field of a series of molecules can be downloaded at https://theochem.chimfar.unimo.it/STAGNATION-GRAPH/

  59. Lazzeretti P (2004) . Phys Chem Chem Phys 6:217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lazzeretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelloni, S., Lazzeretti, P. Magnetotropicity of five-membered heterocyclic molecules. Theor Chem Account 117, 903–913 (2007). https://doi.org/10.1007/s00214-006-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0211-4

Keywords

Navigation