Skip to main content
Log in

Study of H-bond characteristics in sub- and supercritical methanol

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Classical molecular dynamics simulations of various methanol phase lines near the saturation curve and the critical point have been performed to study the changes in H-bonded clusters structure at transition of methanol to supercritical state. Analysis of H-bonds statistics with combined distance-energy H-bond criterion showed that the correlations between topological characteristics of H-bonds and the mole fraction of H-bonded molecules have unique functional representation despite the phase path applied. In the present study, an attempt has been also made to evaluate the degree of hydrogen bonding by combining the DFT computations on classical MD configurations with the natural bond orbital analysis of the waves functions obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow SJ, Bondarenko GV, Gorbaty YE, Yamaguchi T, Poliakoff M (2006). J Phys Chem A 106:10452–10460

    Article  Google Scholar 

  2. Krishtal S, Kiselev M (2003). Russ J Phys Chem 77:1817–1820

    Google Scholar 

  3. Phase data for isobar lines and saturation curve were taken from: Zubarev V. N., Bagdonas A. V. Teploenergetika (Moscow) 1969, 16, 88.

    Google Scholar 

  4. Haughney M, Ferrario M, McDonald IR (1987). J Phys Chem 91:4934–4940

    Article  CAS  Google Scholar 

  5. Krishtal S (2004) Structure of H-bonded clusters in methanol and water in Sub- and supercritical state. PhD Thesis, Institute of Solution Chemistry of Russian Academy of Sciences

  6. Koch U, Popelier PLA (1995). J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  7. Popelier PLA (1998). J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  8. Hobza P, Havlas Z (2002). Theor Chem Acc 108:325–334

    CAS  Google Scholar 

  9. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  10. Weinhold F (1997). J Mol Struct 398–399:181–197

    Google Scholar 

  11. Wood RH, Yezdimer EM, Sakane S, Barriocanal J (1999). J Chem Phys 110:1329–1337

    Article  CAS  Google Scholar 

  12. Sakane S, Yezdimer EM, Liu W, Barriocanal JA, Doren DJ, Wood RH (2000). J Chem Phys 113:2583–2593

    Article  CAS  Google Scholar 

  13. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987

    Google Scholar 

  14. Asahi N, Nakamura Y (1998). Chem Phys Lett 290:63–67

    Article  CAS  Google Scholar 

  15. Yamaguchi T, Benmore CJ, Soper AK (2000). J Chem Phys 112:8976–8987

    Article  CAS  Google Scholar 

  16. Kalinichev AG (2001) In: Cygan RT, Kubicki JD (eds) Molecular modeling theory: applications in the geosciences. Reviews in mineralogy and geochemistry, vol 42, Mineralogical Society of America, Washington, D.C, pp 83–130

  17. Mountain RD (1999). J Chem Phys 110:2109–2115

    Article  CAS  Google Scholar 

  18. Krishtal S, Kiselev M, Puhovski Y, Kerdcharoen T, Hannongbua S, Heinzinger K (2001). Z Naturforsch 56a:579–584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishtal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishtal, S., Kiselev, M., Kolker, A. et al. Study of H-bond characteristics in sub- and supercritical methanol. Theor Chem Acc 117, 297–304 (2007). https://doi.org/10.1007/s00214-006-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0140-2

Keywords

Navigation