Skip to main content

Advertisement

Log in

Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer’s diseases

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Alzheimer’s disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer’s disease.

Methods

For the induction of Alzheimer’s disease, amyloid beta (Aβ) 1–42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer’s disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area.

Results

Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn H-S, Foster C, Boykow G, Stamford A, Manna M, Graziano M (2000) Inhibition of cellular action of thrombin by N3-cyclopropyl-7-{[4-(1-methylethyl) phenyl] methyl}-7H-pyrrolo [3, 2-f] quinazoline-1, 3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem Pharmacol 60:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Almonte AG, Hamill CE, Chhatwal JP, Wingo TS, Barber JA, Lyuboslavsky PN, Sweatt JD, Ressler KJ, White DA, Traynelis SF (2007) Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 88:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD (2013) Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 124:109–122

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Guo J-P, McGeer PL (2005) Proteolysis of non-phosphorylated and phosphorylated tau by thrombin. J Biol Chem 280:5145–5153

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Miklossy J, Klegeris A, Guo J-P, McGeer PL (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 65:19–25

    Article  CAS  PubMed  Google Scholar 

  • Bagheri M, Joghataei M-T, Mohseni S, Roghani M (2011) Genistein ameliorates learning and memory deficits in amyloid β (1–40) rat model of Alzheimer’s disease. Neurobiol Learn Mem 95:270–276

    Article  CAS  PubMed  Google Scholar 

  • Bengoetxea X, Rodriguez-Perdigon M, Ramirez MJ (2015) Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease. Front Biosci (Schol Ed) 7:10–29

    Article  Google Scholar 

  • Berkowitz LE, Harvey RE, Drake E, Thompson SM, Clark BJ (2018) Progressive impairment of directional and spatially precise trajectories by TgF344-Alzheimer’s disease rats in the Morris water task. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Berry A, Tomidokoro Y, Ghiso J, Thornton J (2008) Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-β levels in female rats. Horm Behav 54:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, Garcia JG, Verin AD (2004) Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 18:1879–1890

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bogovyk R, Lunko O, Fedoriuk M, Isaev D, Krishtal O, Holmes GL, Isaeva E (2017) Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav 67:66–69

    Article  PubMed  Google Scholar 

  • Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. JoVE (Journal of Visualized Experiments): e2920

  • Burwell RD, Saddoris MP, Bucci DJ, Wiig KA (2004) Corticohippocampal contributions to spatial and contextual learning. J Neurosci 24:3826–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yamada K, Nabeshima T, Sokabe M (2006) α7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in β-amyloid infused rats. Neuropharmacology 50:254–268

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Kim YE, Lee WJ, Choi JW, Park GH, Kim SD, Jeon SJ, Go HS, Shin SM, Kim W-K (2008) Activation of protease-activated receptor1 mediates induction of matrix metalloproteinase-9 by thrombin in rat primary astrocytes. Brain Res Bull 76:368–375

    Article  CAS  PubMed  Google Scholar 

  • Chong YH, Jung JM, Choi W, Park CW, Choi KS, Suh Y-H (1994) Bacterial expression, purification of full length and carboxyl terminal fragment of Alzheimer amyloid precursor protein and their proteolytic processing by thrombin. Life Sci 54:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Ciallella JR, Figueiredo H, Smith-Swintosky V, McGillis JP (1999) Thrombin induces surface and intracellular secretion of amyloid precursor protein from human endothelial cells. Thromb Haemost 81:630–637

    Article  CAS  PubMed  Google Scholar 

  • Denninger JK, Smith BM, Kirby ED (2018) Novel object recognition and object location behavioral testing in mice on a budget. JoVE (Journal of Visualized Experiments): e58593

  • Doyle E, Bruce MT, Breen KC, Smith DC, Anderton B, Regan CM (1990) Intraventricular infusions of antibodies to amyloid-β-protein precursor impair the acquisition of a passive avoidance response in the rat. Neurosci Lett 115:97–102

    Article  CAS  PubMed  Google Scholar 

  • Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133:155–175

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Meliani K (1992) A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behav Brain Res 51:83–92

    Article  CAS  PubMed  Google Scholar 

  • Eskandari-Roozbahani N, Shomali T, Taherianfard M (2019) Neuroprotective effect of Zataria multiflora essential oil on rats with Alzheimer disease: a mechanistic study. Basic Clin Neurosci 10:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeilpour K, Sheibani V, Shabani M, Mirnajafi-Zadeh J (2017) Effect of low frequency electrical stimulation on seizure-induced short-and long-term impairments in learning and memory in rats. Physiol Behav 168:112–121

    Article  CAS  PubMed  Google Scholar 

  • Garcia J (2009) Concepts in microvascular endothelial barrier regulation in health and disease. Microvasc Res 77:1–3

    Article  PubMed  Google Scholar 

  • Ghasemi T, Sohanaki H, Keshavarz M, Ghasemi E, Parviz M (2017) Low dose Teucrium polium hydro-alcoholic extract treatment effects on spatial memory and hippocampal neuronal count of rat Aβ25-35 model of Alzheimer’s disease. Arch Neurosci 6(3):90893

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grammas P, Samany PG, Thirumangalakudi L (2006) Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis 9:51–58

    Article  CAS  PubMed  Google Scholar 

  • Granic I, Nyakas C, Luiten PG, Eisel UL, Halmy LG, Gross G, Schoemaker H, Möller A, Nimmrich V (2010) Calpain inhibition prevents amyloid-β-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology 59:334–342

    Article  CAS  PubMed  Google Scholar 

  • Guan J-x, Sun S-g, Cao X-b, Chen Z-B, Tong E-t (2004) Effect of thrombin on blood brain barrier permeability and its mechanism. Chin Med J 117:1677–1681

    CAS  PubMed  Google Scholar 

  • Hamill CE, Caudle WM, Richardson JR, Yuan H, Pennell KD, Greene JG, Miller GW, Traynelis SF (2007) Exacerbation of dopaminergic terminal damage in a mouse model of Parkinson’s disease by the G protein-coupled receptor protease-activated receptor 1. Mol Pharmacol 72:653–664

    Article  CAS  PubMed  Google Scholar 

  • Hamill CE, Mannaioni G, Lyuboslavsky P, Sastre AA, Traynelis SF (2009) Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function. Exp Neurol 217:136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han K-S, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 4:1–12

    Article  Google Scholar 

  • He F-Q, Qiu B-Y, Zhang X-H, Li T-K, Xie Q, Cui D-J, Huang X-L, Gan H-T (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β (1–42). Brain Res 1384:89–96

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zheng M-M, Ma Y, Han X-J, Ma X-Q, Qu C-Q, Du Y-F (2012) Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun 429:125–130

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Li G, Ma R, Sun S-G, Chen J-G (2008) Thrombin-induced microglial activation contributes to the degeneration of nigral dopaminergic neurons in vivo. Neurosci Bull 24:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Murai H, J-i A (1992) Proteolytic processing of amyloid β protein precursor (APP) by thrombin. Biochem Biophys Res Commun 185:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Isaev D, Lushnikova I, Lunko O, Zapukhliak O, Maximyuk O, Romanov A, Skibo G, Tian C, Holmes G, Isaeva E (2015) Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 78:68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaeva E, Hernan A, Isaev D, Holmes GL (2012) Thrombin facilitates seizures through activation of persistent sodium current. Ann Neurol 72:192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T, Matsumoto H, Kirino Y (2016) Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease. J Pharmacol Sci 131:219–222

    Article  CAS  PubMed  Google Scholar 

  • Kunešová G, Hlaváček J, Patočka J, Evangelou A, Zikos C, Benaki D, Paravatou-Petsotas M, Pelecanou M, Livaniou E, Slaninova J (2008) The multiple T-maze in vivo testing of the neuroprotective effect of human in analogues. Peptides 29:1982–1987

    Article  PubMed  Google Scholar 

  • Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Bao X, Wang R (2016) Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening. Int J Mol Med 37:271–283

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang C, Zhang JH, Cai J-M, Cao Y-P, Sun X-J (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 1328:152–161

    Article  CAS  PubMed  Google Scholar 

  • Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. JoVE (Journal of Visualized Experiments): e55718

  • Maggio N, Shavit E, Chapman J, Segal M (2008) Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci 28:732–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam AH, Zare M (2018) Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother 97:1096–1101

    Article  Google Scholar 

  • Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Navabi SP, Sarkaki A, Mansouri E, Badavi M, Ghadiri A, Farbood Y (2018) The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer’s disease. Behav Brain Res 337:99–106

    Article  CAS  PubMed  Google Scholar 

  • NISHINO A, SUZUKI M, OHTANI H, MOTOHASHI O, UMEZAWA K, NAGURA H, YOSHIMOTO T (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma 10:167–179

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier

  • Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, Michetti F, Fumagalli L (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Mol Brain Res 122:93–98

    Article  CAS  PubMed  Google Scholar 

  • Rajizadeh MA, Esmaeilpour K, Haghparast E, Ebrahimi MN, Sheibani V (2020) Voluntary exercise modulates learning & memory and synaptic plasticity impairments in sleep deprived female rats. Brain Res 1729:146598

    Article  CAS  PubMed  Google Scholar 

  • Rajizadeh MA, Esmaeilpour K, Masoumi-Ardakani Y, Bejeshk MA, Shabani M, Nakhaee N, Ranjbar MP, Borzadaran FM, Sheibani V (2018) Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats. Physiol Behav 188:58–66

    Article  CAS  PubMed  Google Scholar 

  • Rajizadeh MA, Sheibani V, Bejeshk MA, Mohtashami Borzadaran F, Saghari H, Esmaeilpour K (2019) The effects of high intensity exercise on learning and memory impairments followed by combination of sleep deprivation and demyelination induced by ethidium bromide. Int J Neurosci 129:1166–1178

    Article  CAS  PubMed  Google Scholar 

  • Rao HV, Thirumangalakudi L, Desmond P, Grammas P (2007) Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem 101:498–505

    Article  CAS  PubMed  Google Scholar 

  • Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE, Lee VM-Y, Kawas CH, Trojanowski JQ (2011) Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old. Brain 134:3708–3715

    Article  PubMed  Google Scholar 

  • Saadati H, Sheibani V, Esmaeili-Mahani S, Hajali V, Mazhari S (2014) Prior regular exercise prevents synaptic plasticity impairment in sleep deprived female rats. Brain Res Bull 108:100–105

    Article  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein: impair synaptic plasticity and behavior synaptic plasticity and the mechanism of Alzheimer’s disease. Springer, pp 89-102

  • Semenikhina M, Bogovyk R, Fedoriuk M, Nikolaienko O, Al Kury LT, Savotchenko A, Krishtal O, Isaeva E (2019) Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neurosci Lett 692:64–68

    Article  CAS  PubMed  Google Scholar 

  • Sipos E, Kurunczi A, Kasza A, Horváth J, Felszeghy K, Laroche S, Toldi J, Parducz A, Penke B, Penke Z (2007) β-Amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147:28–36

    Article  CAS  PubMed  Google Scholar 

  • Smirnov A, Trupp A, Henkel A, Bloch E, Reulbach U, Lewczuk P, Riggert J, Kornhuber J, Wiltfang J (2009) Differential processing and secretion of Aβ peptides and sAPPα in human platelets is regulated by thrombin and prostaglandine 2. Neurobiol Aging 30:1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Smith-Swintosky VL, Zimmer S, Fenton JW, Mattson MP (1995) Opposing actions of thrombin and protease nexin-1 on amyloid β-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons. J Neurochem 65:1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova E, Reiser G (2008) Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases. Thromb Haemost 100:576–581

    Article  CAS  PubMed  Google Scholar 

  • Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65:918–926

    Article  CAS  PubMed  Google Scholar 

  • Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 32:834–844

    Article  CAS  PubMed  Google Scholar 

  • Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV (2004) Amyloid-β (25–35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav 80:647–655

    Article  CAS  PubMed  Google Scholar 

  • Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J, Krug M, Reymann KG, Reiser G (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14:595–608

    Article  CAS  PubMed  Google Scholar 

  • Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW (2003) Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 278:37681–37689

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Trejo J (2007) Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol 14:230–235

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Han WN, Yang GZ, Yuan L, Liu XJ, Li QS, Qi JS (2014) The neuroprotection of Rattin against amyloid β peptide in spatial memory and synaptic plasticity of rats. Hippocampus 24:44–53

    Article  PubMed  Google Scholar 

  • Wang X, Li L, Hölscher C, Pan Y, Chen X, Qi J (2010) Val8-glucagon-like peptide-1 protects against Aβ1–40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 170:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Kawashima S (2001) Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol 412:265–272

    Article  CAS  PubMed  Google Scholar 

  • Yang J-n, Chen J, Xiao M (2017) A protease-activated receptor 1 antagonist protects against global cerebral ischemia/reperfusion injury after asphyxial cardiac arrest in rabbits. Neural Regen Res 12:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokono Y, Kenji H, Masato N, Yota T (2020) Blockade of PAR-1 signaling attenuates cardiac hypertrophy and fibrosis in renin overexpressing hypertensive mice. J Am Heart Assoc 9:119

    Article  Google Scholar 

  • Zamani E, Parviz M, Roghani M, Mohseni-moghaddam P (2019) Key mechanisms underlying netrin-1 prevention of impaired spatial and object memory in Aβ1-42 CA1-injected rats. Clin Exp Pharmacol Physiol 46:86–93

    Article  CAS  PubMed  Google Scholar 

  • Zhu W-J, Yamanaka H, Obata K, Dai Y, Kobayashi K, Kozai T, Tokunaga A, Noguchi K (2005) Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res 1041:205–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Esmaeilpour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, D., Rajizadeh, M.A., Maneshian, M. et al. Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer’s diseases. Psychopharmacology 238, 1645–1656 (2021). https://doi.org/10.1007/s00213-021-05798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05798-8

Keywords

Navigation