Skip to main content

Advertisement

Log in

Role of vasopressin V1a receptor in ∆9-tetrahydrocannabinol-induced cataleptic immobilization in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cannabis is a widely used illicit substance. ∆9-tetrahydrocannabinol (THC), the major psychoactive component of cannabis, is known to cause catalepsy in rodents. Recent studies have shown that vasopressin V1a and V1b receptors are widely distributed in the central nervous system and are capable of influencing a wide variety of brain functions such as social behavior, emotionality, and learning and memory.

Objectives

The present study was designed to examine the possible involvement of V1a and V1b receptors in THC-induced catalepsy-like immobilization.

Methods

The induction of catalepsy following treatment with THC (10 mg/kg, i.p.) or haloperidol (1 mg/kg, i.p.) was evaluated in wild-type (WT), V1a receptor knockout (V1aRKO), and V1b receptor knockout (V1bRKO) mice. The effect of treatment with the selective 5-hydroxytryptamine1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.) on THC-induced catalepsy was also evaluated in V1aRKO mice. Moreover, the effects of the V1a receptor antagonist VMAX-357 and the V1b receptor antagonist ORG-52186 on THC-induced catalepsy were evaluated in ddY mice.

Results

THC and haloperidol markedly caused catalepsy in V1bRKO mice as well as in WT mice. However, V1aRKO mice exhibited a reduction in catalepsy induced by THC but not by haloperidol. WAY100635 dramatically enhanced THC-induced catalepsy in V1aRKO mice. Although VMAX-357 (10 mg/kg, p.o.) but not ORG-52186 significantly attenuated THC-induced catalepsy, it had no significant effect on the enhancement of THC-induced catalepsy by WAY100635 in ddY mice.

Conclusions

These findings suggest that V1a receptor regulates THC-induced catalepsy-like immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers HE, Karom M, Smith D (2002) Serotonin and vasopressin interact in the hypothalamus to control communicative behavior. Neuroreport 13:931–933

    Article  CAS  PubMed  Google Scholar 

  • Anderson JJ, Kask AM, Chase TN (1996) Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. Eur J Pharmacol 295:163–168

    Article  CAS  PubMed  Google Scholar 

  • Auerbach S, Lipton P (1982) Vasopressin augments depolarization-induced release and synthesis of serotonin in hippocampal slices. J Neurosci 2:477–482

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    Article  CAS  PubMed  Google Scholar 

  • Bartoszyk GD, Roos C, Ziegler H (1996) 5-HT1A receptors are not involved in clozapine’s lack of cataleptogenic potential. Neuropharmacology 35:1645–1646

    Article  CAS  PubMed  Google Scholar 

  • Bovasso GB (2001) Cannabis abuse as a risk factor for depressive symptoms. Am J Psychiatry 158:2033–2037

    Article  CAS  PubMed  Google Scholar 

  • Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84:1–24

    Article  CAS  PubMed  Google Scholar 

  • Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (2006) WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology 188:244–251. https://doi.org/10.1007/s00213-006-0490-4

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Wagner FA, Anthony JC (2002) Marijuana use and the risk of major depressive episode. Epidemiological evidence from the United States National Comorbidity Survey. Soc Psychiatry Psychiatr Epidemiol 37:199–206

    Article  PubMed  Google Scholar 

  • Egashira N (2017) Delta-9-tetrahydrocannabinol and catalepsy-like immobilization. In: Preedy VR (ed) Handbook of cannabis and related pathologies: biology, pharmacology, diagnosis, and treatment. Academic Press, Amsterdam, pp 326–334

    Chapter  Google Scholar 

  • Egashira N, Tanoue A, Higashihara F, Mishima K, Fukue Y, Takano Y, Tsujimoto G, Iwasaki K, Fujiwara M (2004) V1a receptor knockout mice exhibit impairment of spatial memory in an eight-arm radial maze. Neurosci Lett 356:195–198

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Tanoue A, Higashihara F et al (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b >receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology 30:1996–2005

  • Egashira N, Matsuda T, Koushi E, Mishima K, Iwasaki K, Shoyama Y, Fujiwara M (2006) Involvement of 5-hydroxytryptamine1A receptors in ∆9-tetrahydrocannabinol-induced catalepsy-like immobilization in mice. Eur J Pharmacol 550:117–122

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Koushi E, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2007a) 2,5-Dimethoxy-4-iodoamphetamine (DOI) inhibits ∆9-tetrahydrocannabinol-induced catalepsy-like immobilization in mice. J Pharmacol Sci 105:361–366

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Tanoue A, Matsuda T, Koushi E, Harada S, Takano Y, Tsujimoto G, Mishima K, Iwasaki K, Fujiwara M (2007b) Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res 178:123–127

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2009) New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. J Pharmacol Sci 109:44–49

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    CAS  PubMed  Google Scholar 

  • Fujiwara M, Egashira N (2004) New perspectives in the studies on endocannabinoid and cannabis: abnormal behaviors associate with CB1 cannabinoid receptor and development of therapeutic application. J Pharmacol Sci 96:362–366

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    CAS  PubMed  Google Scholar 

  • Hicks PB (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci 47:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Hashimoto K, Tsujimoto G (1994) Distribution and development change of vasopressin V1A and V2 receptor mRNA in rats. Eur J Pharmacol 267:71–75

    Article  CAS  PubMed  Google Scholar 

  • Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Winslow JT (1998) Serotonin and neuropeptides in affiliative behaviors. Biol Psychiatry 44:207–219

    Article  CAS  PubMed  Google Scholar 

  • Invernizzi RW, Cervo L, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518

    Article  CAS  PubMed  Google Scholar 

  • Jard S, Barberis C, Audigier S, Tribollet E (1987) Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res 72:173–187

    Article  CAS  PubMed  Google Scholar 

  • Johns A (2001) Psychiatric effects of cannabis. Br J Psychiatry 178:116–122

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Riis M, Knigge U, Kjaer A, Warberg J (2003) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15:242–249

    Article  PubMed  Google Scholar 

  • Koshimizu TA, Nasa Y, Tanoue A et al (2006) V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A 103:7807–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92:1813–1864. https://doi.org/10.1152/physrev.00035.2011

    Article  CAS  PubMed  Google Scholar 

  • Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Phys Regul Integr Comp Phys 296:R824–R830. https://doi.org/10.1152/ajpregu.90463.2008

    CAS  Google Scholar 

  • Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young WS III, Mezey E, Brownstein MJ (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A 92:6783–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenc-Koci E, Wolfarth S, Ossowska K (1996) Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res 109:268–276

    Article  CAS  PubMed  Google Scholar 

  • Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63

    Article  CAS  PubMed  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  • Lynskey MT, Glowinski AL, Todorov AA, Bucholz KK, Madden PA, Nelson EC, Statham DJ, Martin NG, Heath AC (2004) Major depressive disorder, suicidal ideation, and suicide attempt in twins discordant for cannabis dependence and early-onset cannabis use. Arch Gen Psychiatry 61:1026–1032

    Article  PubMed  Google Scholar 

  • Marchese G, Casti P, Ruiu S, Saba P, Sanna A, Casu G, Pani L (2003) Haloperidol, but not clozapine, produces dramatic catalepsy in ∆9-THC-treated rats: possible clinical implications. Br J Pharmacol 140:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel JC, Leduc N, Ormière AM, Faucillon V, Danty N, Culie C, Cussac D, Newman-Tancredi A (2007) WAY-100635 has high selectivity for serotonin 5-HT1A versus dopamine D4 receptors. Eur J Pharmacol 574:15–19. https://doi.org/10.1016/j.ejphar.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  • McGuire PK, Jones P, Harvey I, Bebbington P, Toone B, Lewis S, Murray RM (1994) Cannabis and acute psychosis. Schizophr Res 13:161–167

    Article  CAS  PubMed  Google Scholar 

  • Neal-Beliveau BS, Joyce JN, Lucki I (1993) Serotonergic involvement in haloperidol-induced catalepsy. J Pharmacol Exp Ther 265:207–217

    CAS  PubMed  Google Scholar 

  • Pires JG, Bonikovski V, Futuro-Neto HA (2005) Acute effects of selective serotonin reuptake inhibitors on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res 38:1867–1872

    Article  CAS  PubMed  Google Scholar 

  • Prinssen EP, Colpaert FC, Koek W (2002) 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol 453:217–221

    Article  CAS  PubMed  Google Scholar 

  • Rood BD, Beck SG (2014) Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor. Neuroscience 260:205–216. https://doi.org/10.1016/j.neuroscience.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  • Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519:2434–2474. https://doi.org/10.1002/cne.22635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samad N, Haleem DJ (2014) Haloperidol-induced extra pyramidal symptoms attenuated by imipramine in rats. Pak J Pharm Sci 27:1497–1501

    CAS  PubMed  Google Scholar 

  • Sano K, Mishima K, Koushi E et al (2008) ∆9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience 151:320–328

    Article  CAS  PubMed  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2004) Results from the 2003 national survey on drug use and health: national findings. Substance Abuse and Mental Health Services Administration, Rockville

  • Szot P, Bale TL, Dorsa DM (1994) Distribution of messenger RNA for the vasopressin V1a receptor in the CNS of male and female rats. Brain Res Mol Brain Res 24:1–10

    Article  CAS  PubMed  Google Scholar 

  • Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, Mori T, Tsujimoto G (2004) The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest 113:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tribollet E, Raufaste D, Maffrand JP, Serradeli-Le Gal C (1999) Binding of the non-peptide vasopressin V1a receptor antagonist SR-49059 in the rat brain: an in vitro and in vivo autoradiographic study. Neuroendocrinology 69:113–120

    Article  CAS  PubMed  Google Scholar 

  • Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  CAS  PubMed  Google Scholar 

  • Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139:5015–5033

    Article  CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198

    Article  PubMed  Google Scholar 

  • Varvel SA, Bridgen DT, Tao Q, Thomas BF, Martin BR, Lichtman AH (2005) ∆9-tetrahydrocannabinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J Pharmacol Exp Ther 314:329–337

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518. https://doi.org/10.1016/j.yfrne.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH, Neumann ID (2007) Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav Evol 70:274–285

    Article  PubMed  Google Scholar 

  • Wadenberg ML, Ahlenius S (1995) Antagonism by the 5-HT2A/C receptor agonist DOI of raclopride-induced catalepsy in the rat. Eur J Pharmacol 294:247–251

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS 3rd. (2007) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6:540–551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Otsuka Pharmaceutical Co., Ltd. for generously donating the VMAX-357 and ORG-52186 used in this study. All animal experiments were performed in accordance with current Japanese legislation regarding the use of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuaki Egashira.

Ethics declarations

All animal care and use procedures were performed in compliance with the regulations established by the Experimental Animal Care and Use Committee of Fukuoka University, which are in accordance with the universal principles of laboratory animal care.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egashira, N., Koushi, E., Myose, T. et al. Role of vasopressin V1a receptor in ∆9-tetrahydrocannabinol-induced cataleptic immobilization in mice. Psychopharmacology 234, 3475–3483 (2017). https://doi.org/10.1007/s00213-017-4735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4735-1

Keywords

Navigation