Skip to main content

Advertisement

Log in

CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

As enhanced corticotropin-releasing factor (CRF) transmission is associated with induction of sensorimotor gating deficits, CRF1 receptor antagonists may reverse disrupted prepulse inhibition (PPI), an operational measure of sensorimotor gating.

Objectives

To determine the effects of CRF1 receptor antagonists in pharmacological models of disrupted PPI and to determine if long-term elevated central CRF levels alter sensitivity towards PPI disrupting drugs.

Methods

CP154,526 (10–40 mg/kg), SSR125543 (3–30 mg/kg) and DMP695 (40 mg/kg) were tested on PPI disruption provoked by d-amphetamine (2.5, 3 mg/kg), ketamine (5, 30 mg/kg) and MK801 (0.2, 0.5 mg/kg) in Wistar rats, C57Bl/6J and CD1 mice, and on spontaneously low PPI in Iffa Credo rats and DBA/2J mice. PPI-disrupting effects of d-amphetamine (2.5–5 mg/kg) and MK801 (0.3–1 mg/kg) were examined in CRF-overexpressing (CRFtg) mice, which display PPI deficits. Finally, we determined the influence of CP154,526 on d-amphetamine-induced dopamine outflow in nucleus accumbens and prefrontal cortex of CRFtg mice using in vivo microdialysis.

Results

No CRF1−antagonists improved PPI deficits in any test. CRFtg mice showed blunted PPI disruption in response to MK801, but not d-amphetamine. Further, d-amphetamine-induced dopamine release was less pronounced in CRFtg versus wild-type mice, a response normalized by pretreatment with CP154,526.

Conclusion

The inability of CRF1 receptor antagonists to block pharmacological disruption of sensorimotor gating suggests that the involvement of CRF1 receptors in the modulation of dopaminergic and glutamatergic neurotransmission relevant for sensory gating is limited. Furthermore, the alterations observed in CRFtg mice support the notion that long-term elevated central CRF levels induce changes in these neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almela P, Navarro-Zaragoza J, Garcia-Carmona JA, Mora L, Hidalgo J, Milanes MV, Laorden ML (2012) Role of corticotropin-releasing factor (CRF) receptor-1 on the catecholaminergic response to morphine withdrawal in the nucleus accumbens (NAc). PLoS One 7:e47089. doi:10.1371/journal.pone.0047089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang Z (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci 9:133–139. doi:10.1038/nn1613

    Article  CAS  PubMed  Google Scholar 

  • Bakshi VP, Geyer MA (1998) Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J Neurosci 18:8394–8401

    CAS  PubMed  Google Scholar 

  • Bakshi VP, Geyer MA (1999) Alpha-1-adrenergic receptors mediate sensorimotor gating deficits produced by intracerebral dizocilpine administration in rats. Neuroscience 92(1):113–121

    Article  CAS  PubMed  Google Scholar 

  • Bast T, Zhang W, Feldon J, White IM (2000) Effects of MK801 and neuroleptics on prepulse inhibition: re-examination in two strains of rats. Pharmacol Biochem Behavior 67(3):647–658

    Article  CAS  Google Scholar 

  • Benes FM (2010) Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology 35(1):239–257. doi:10.1038/npp.2009.116

    Article  PubMed Central  PubMed  Google Scholar 

  • Blacktop JM, Seubert C, Baker DA, Ferda N, Lee G, Graf EN, Mantsch JR (2011) Augmented cocaine seeking in response to stress or CRF delivered into the ventral tegmental area following long-access self-administration is mediated by CRF receptor type 1 but not CRF receptor type 2. J Neurosci 31:11396–11403. doi:10.1523/JNEUROSCI.1393-11.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C, Cohen C, Alonso R, Vige X, Biton B, Steinberg R, Sevrin M, Oury-Donat F, George P, Bergis O, Griebel G, Avenet P, Scatton B (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav 91:47–58. doi:10.1016/j.pbb.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Braff DL, Swerdlow NR, Geyer MA (1999) Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry 156:596–602

    CAS  PubMed  Google Scholar 

  • Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ (2004) Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 126:533–540. doi:10.1016/j.neuroscience.2004.03.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conti LH (2005) Characterization of the effects of corticotropin-releasing factor on prepulse inhibition of the acoustic startle response in Brown Norway and Wistar–Kyoto rats. Eur J Pharmacol 507:125–134. doi:10.1016/j.ejphar.2004.11.055

    Article  CAS  PubMed  Google Scholar 

  • Conti LH, Costill JE, Flynn S, Tayler JE (2005) Effects of a typical and an atypical antipsychotic on the disruption of prepulse inhibition caused by corticotropin-releasing factor and by rat strain. Behav Neurosci 119:1052–1060. doi:10.1037/0735-7044.119.4.1052

    Article  PubMed  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1997) Some, but not all, antipsychotic drugs potentiate a low level of prepulse inhibition shown by rats of the Wistar strain. Behav Pharmacol 8:364–372

    Article  CAS  PubMed  Google Scholar 

  • Dirks A, Groenink L, Westphal KG, Olivier JD, Verdouw PM, van der Gugten J, Geyer MA, Olivier B (2003) Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs. Neuropsychopharmacology 28:1790–1798. doi:10.1038/sj.npp.1300256

    Article  CAS  PubMed  Google Scholar 

  • Dirks A, Groenink L, Bouwknecht JA, Hijzen TH, Van Der Gugten J, Ronken E, Verbeek JS, Veening JG, Dederen PJ, Korosi A, Schoolderman LF, Roubos EW, Olivier B (2002a) Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations. Eur J Neurosci 16:1751–1760

    Article  PubMed  Google Scholar 

  • Dirks A, Groenink L, Schipholt MI, van der Gugten J, Hijzen TH, Geyer MA, Olivier B (2002b) Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry 51(7):583–590

    Article  CAS  PubMed  Google Scholar 

  • Douma TN, Millan MJ, Olivier B, Groenink L (2011) Linking stress and schizophrenia: a focus on prepulse inhibition. In: Uehara T (ed) Psychiatric disorders — trends and developments. InTech

  • Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  CAS  PubMed  Google Scholar 

  • Dunn AJ, Berridge CW (1987) Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol Biochem Behav 27:685–691

    Article  CAS  PubMed  Google Scholar 

  • Fendt M, Schwienbacher I, Koch M (2000) Amygdaloid N-methyl-d-aspartate and gamma-aminobutyric acid(A) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 98:55–60

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698. doi:10.1146/annurev.pharmtox.47.120505.105140

    Article  CAS  PubMed  Google Scholar 

  • Flood DG, Zuvich E, Marino MJ, Gasior M (2011) Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse. Psychopharmacology (Berl) 215:441–454. doi:10.1007/s00213-011-2196-5

    Article  CAS  Google Scholar 

  • Flood DG, Choinski M, Marino MJ, Gasior M (2009) Mood stabilizers increase prepulse inhibition in DBA/2NCrl mice. Psychopharmacology (Berl) 205:369–377. doi:10.1007/s00213-009-1547-y

    Article  CAS  Google Scholar 

  • Fu Y, Pollandt S, Liu J, Krishnan B, Genzer K, Orozco-Cabal L, Gallagher JP, Shinnick-Gallagher P (2007) Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J Neurophysiol 97(1):937–941

    Article  CAS  PubMed  Google Scholar 

  • George O, Le Moal M, Koob GF (2012) Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav 106:58–64. doi:10.1016/j.physbeh.2011.11.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156(2–3):117–154

    Article  CAS  Google Scholar 

  • Giardino WJ, Mark GP, Stenzel-Poore MP, Ryabinin AE (2012) Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine. Psychopharmacology (Berl) 219:1055–1063. doi:10.1007/s00213-011-2433-y

    Article  CAS  Google Scholar 

  • Gilligan PJ, Robertson DW, Zaczek R (2000) Corticotropin releasing factor (CRF) receptor modulators: progress and opportunities for new therapeutic agents. J Med Chem 43:1641–1660

    Article  CAS  PubMed  Google Scholar 

  • Graham FK (1975) Presidential Address,1974.The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrie P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylp henyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist: II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301(1):333–345

    Article  CAS  PubMed  Google Scholar 

  • Groenink L, Dirks A, Verdouw PM, de Graaff M, Peeters BW, Millan MJ, Olivier B (2008) CRF1 not glucocorticoid receptors mediate prepulse inhibition deficits in mice overexpressing CRF. Biol Psychiatry 63:360–368. doi:10.1016/j.biopsych.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  • Gully D, Geslin M, Serva L, Fontaine E, Roger P, Lair C, Darre V, Marcy C, Rouby PE, Simiand J, Guitard J, Gout G, Steinberg R, Rodier D, Griebel G, Soubrie P, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A): a potent and selective corticotrophin-releasing factor(1) receptor antagonist: I. Biochemical and pharmacological characterization. J Pharmacol Exp Ther 301(1):322–332

    Article  CAS  PubMed  Google Scholar 

  • Gurkovskaya OV, Palamarchouk V, Smagin G, Goeders NE (2005) Effects of corticotropin-releasing hormone receptor antagonists on cocaine-induced dopamine overflow in the medial prefrontal cortex and nucleus accumbens of rats. Synapse 57:202–212. doi:10.1002/syn.20172

    Article  CAS  PubMed  Google Scholar 

  • Haass-Koffler CL, Bartlett SE (2012) Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity. Front Mol Neurosci 5:91. doi:10.3389/fnmol.2012.00091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn J, Hopf FW, Bonci A (2009) Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons. J Neurosci 29:6535–6544. doi:10.1523/JNEUROSCI.4773-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herringa RJ, Roseboom PH, Kalin NH (2006) Decreased amygdala CRF-binding protein mRNA in post-mortem tissue from male but not female bipolar and schizophrenic subjects. Neuropsychopharmacology 31:1822–1831. doi:10.1038/sj.npp.1301038

    Article  CAS  PubMed  Google Scholar 

  • Hikichi H, Nishino M, Fukushima M, Satow A, Maehara S, Kawamoto H, Ohta H (2010) Pharmacological effects of metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. Eur J Pharmacol 639:99–105. doi:10.1016/j.ejphar.2010.03.046

    Article  CAS  PubMed  Google Scholar 

  • Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H (2000) Effect of corticotropin releasing factor receptor 1 antagonist on extracellular norepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex of rats in vivo. Neuropeptides 34:234–239. doi:10.1054/npep.2000.0806

    Article  CAS  PubMed  Google Scholar 

  • Izzo E, Sanna PP, Koob GF (2005) Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor. Pharmacol Biochem Behav 81:701–708. doi:10.1016/j.pbb.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P, Latimer LG (1987) Neurochemical and behavioral effects of corticotropin-releasing factor in the ventral tegmental area of the rat. J Pharmacol Exp Ther 242:757–763

    CAS  PubMed  Google Scholar 

  • Keller C, Bruelisauer A, Lemaire M, Enz A (2002) Brain pharmacokinetics of a nonpeptidic corticotropin-releasing factor receptor antagonist. Drug Metab Dispos 30(2):173–176

    Article  CAS  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128

    Article  CAS  PubMed  Google Scholar 

  • Kohl S, Heekeren K, Klosterkotter J, Kuhn J (2013) Prepulse inhibition in psychiatric disorders—apart from schizophrenia. J Psychiatr Res 47:445–452. doi:10.1016/j.jpsychires.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2010) The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 1314:3–14. doi:10.1016/j.brainres.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  • Lavicky J, Dunn AJ (1993) Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. J Neurochem 60:602–612

    Article  CAS  PubMed  Google Scholar 

  • Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem 15:483–491. doi:10.1101/lm.978708

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim MM, Liu Y, Ryabinin AE, Bai Y, Wang Z, Young LJ (2007) CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Horm Behav 51:508–515. doi:10.1016/j.yhbeh.2007.01.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu L, Liu Z, Huang M, Zhang Z (2003) Dopamine-dependent responses to cocaine depend on corticotropin-releasing factor receptor subtypes. J Neurochem 84:1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J (2009) Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav Brain Res 204:322–334. doi:10.1016/j.bbr.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Dorey G, Casara P, Dekeyne A (2001) Anxiolytic properties of the selective, non-peptidergic CRF(1) antagonists, CP154,526 and DMP695: a comparison to other classes of anxiolytic agent. Neuropsychopharmacology 25:585–600. doi:10.1016/S0893-133X(01)00244-5

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joëls M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11(2):141–168

    Article  CAS  PubMed  Google Scholar 

  • Nikisch G, Baumann P, Liu T, Mathe AA (2012) Quetiapine affects neuropeptide Y and corticotropin-releasing hormone in cerebrospinal fluid from schizophrenia patients: relationship to depression and anxiety symptoms and to treatment response. Int J Neuropsychopharmacol 15: 1051–1061. DOI: 10.1017/S1461145711001556.

    Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology (Berl) 156:284–290

    Article  CAS  Google Scholar 

  • Pan JT, Lookingland KJ, Moore KE (1995) Differential effects of corticotropin-releasing hormone on central dopaminergic and noradrenergic neurons. J Biomed Sci 2:50–56

    Article  CAS  PubMed  Google Scholar 

  • Pecina S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8. doi:10.1186/1741-7007-4-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Philbert J, Belzung C, Griebel G (2013) The CRF(1) receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: comparison with paroxetine and d-cycloserine. Psychopharmacology (Berl). 228:97–107

    Google Scholar 

  • Prins J, Westphal KG, Korte-Bouws GA, Quinton MS, Schreiber R, Olivier B, Korte SM (2011) The potential and limitations of DOV 216,303 as a triple reuptake inhibitor for the treatment of major depression: a microdialysis study in olfactory bulbectomized rats. Pharmacol Biochem Behav 97:444–452. doi:10.1016/j.pbb.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  • Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A (2004) Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24:3471–3479. doi:10.1523/JNEUROSCI.5740-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–155

    CAS  PubMed  Google Scholar 

  • Risbrough VB, Hauger RL, Roberts AL, Vale WW, Geyer MA (2004) Corticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior. J Neurosci 24:6545–6552. doi:10.1523/JNEUROSCI.5760-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Peselow E (2012) Co-occurring psychotic and addictive disorders: neurobiology and diagnosis. Clin Neuropharmacol 35:235–243. doi:10.1097/WNF.0b013e318261e193

    Article  PubMed  Google Scholar 

  • Sautter FJ, Bissette G, Wiley J, Manguno-Mire G, Schoenbachler B, Myers L, Johnson JE, Cerbone A, Malaspina D (2003) Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol Psychiatry 54:1382–1388

    Article  CAS  PubMed  Google Scholar 

  • Shekhar A, Truitt W, Rainnie D, Sajdyk T (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8:209–219. doi:10.1080/10253890500504557

    Article  CAS  PubMed  Google Scholar 

  • Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46:1480–1508

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388. doi:10.1007/s00213-008-1072-4

    Article  CAS  PubMed Central  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Vinkers CH, Hendriksen H, van Oorschot R, Cook JM, Rallipalli S, Huang S, Millan MJ, Olivier B, Groenink L (2012) Lifelong CRF overproduction is associated with altered gene expression and sensitivity of discrete GABA(A) and mGlu receptor subtypes. Psychopharmacology (Berl) 219:897–908. doi:10.1007/s00213-011-2423-0

    Article  CAS  Google Scholar 

  • Vinkers CH, Risbrough VB, Geyer MA, Caldwell S, Low MJ, Hauger RL (2007) Role of dopamine D1 and D2 receptors in CRF-induced disruption of sensorimotor gating. Pharmacol Biochem Behav 86:550–558. doi:10.1016/j.pbb.2007.01.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan FJ, Geyer MA, Swerdlow NR (1995) Presynaptic dopamine–glutamate interactions in the nucleus accumbens regulate sensorimotor gating. Psychopharmacology (Berl) 120:433–441

    Article  CAS  Google Scholar 

  • Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A (2008) Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. J Physiol 586:2157–2170. doi:10.1113/jphysiol.2007.150078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wise RA, Morales M (2010) A ventral tegmental CRF–glutamate–dopamine interaction in addiction. Brain Res 1314:38–43. doi:10.1016/j.brainres.2009.09.101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yee BK, Chang DL, Feldon J (2004) The Effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877. doi:10.1038/sj.npp.1300480

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla EP, Koob GF (2004) The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs 3(7):799–828

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gerdien Korte-Bouws for conducting and analyzing the HPLC studies and Elisabeth Y Bijlsma for valuable discussions regarding the content of this manuscript.

Conflicts of interest

The authors have no conflicts of interest to disclose. In the past 5 years, LG received research grants/support from PsychoGenics Inc. and Servier. BO received research grants/support from Emotional Brain, PsychoGenics Inc., Sepracor and Lundbeck and acted as advisor for Lundbeck. MJM is a full-time employee of Servier, BD and GG are full-time employees of Sanofi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Groenink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douma, T.N., Millan, M.J., Boulay, D. et al. CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents. Psychopharmacology 231, 1289–1303 (2014). https://doi.org/10.1007/s00213-013-3315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3315-2

Keywords

Navigation