Skip to main content
Log in

The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory

A dual [11C]raclopride and [18 F]FDG imaging study with aripiprazole

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The effects of aripiprazole on cognitive function are obscure, possibly due to the difficulty in disentangling the specific effects on cognitive function from effects secondary to the improvement of other schizophrenic symptoms. This prompts the necessity of using an intermediate biomarker relating the drug effect on the brain to change in cognitive function.

Objectives

To explore the effect of aripiprazole on cognitive function, we measured changes in frontal metabolism as an intermediate biomarker and sought to determine its relationship with D2 receptor occupancy and changes in working memory.

Methods

Fifteen healthy male volunteers participated in the study. Serial positron emission tomography (PET) scans with [11C]raclopride and [18 F]FDG were conducted 1 day before and 2 days after the administration of aripiprazole. The subjects performed the N-back task just after finishing the [18 F]FDG scan.

Results

The mean (±SD) D2 receptor occupancies were 22.2 ± 16.0 % in the 2 mg group, 35.5 ± 3.6 % in the 5 mg group, 63.2 ± 9.9 % in the 10 mg group and 72.8 ± 2.1 % in the 30 mg group. The frontal metabolism was significantly decreased after the administration of aripiprazole (t = 2.705, df = 14, p = 0.017). Greater striatal D2 receptor occupancy was related to greater decrease in frontal metabolism (r = −0.659, p = 0.010), and greater reduction in frontal metabolism was associated with longer reaction times (r = −0.597, p = 0.019) under the greatest task load.

Conclusions

Aripiprazole can affect cognitive function and alter frontal metabolic function. The changes in these functions are linked to greater D2 receptor occupancy. This suggests that it may be important to find the lowest effective dose of aripiprazole in order to prevent adverse cognitive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barch DM, Smith E (2008) The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry 64:11–17

    Article  PubMed  Google Scholar 

  • Bartlett EJ, Brodie JD, Simkowitz P, Schlosser R, Dewey SL, Lindenmayer JP, Rusinek H, Wolkin A, Cancro R, Schiffer W (1998) Effect of a haloperidol challenge on regional brain metabolism in neuroleptic-responsive and nonresponsive schizophrenic patients. Am J Psychiatry 155:337–343

    PubMed  CAS  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Haznedar MM, Aronowitz J, Brickman AM, Newmark RE, Bloom R, Brand J, Goldstein KE, Heath D, Starson M, Hazlett EA (2007) FDG-PET in never-previously medicated psychotic adolescents treated with olanzapine or haloperidol. Schizophr Res 94:293–305

    Article  PubMed  Google Scholar 

  • Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024

    Article  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS, Williams GV (2004) Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology (Berl) 174:111–125

    Article  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Miriam G, Williams BWJ (2002) Structured clinical interview for DSM–IV–TR axis I disorders, Research version, Non-patient edition. (SCID-I/NP). Biometrics Research, New York State Psychiatry Institute, New York

    Google Scholar 

  • Frankle WG, Laruelle M, Haber SN (2006) Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection. Neuropsychopharmacology 31:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Grasby PM, McGuire PK (2010) Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry 67:683–691

    Article  PubMed  Google Scholar 

  • Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Montgomery AJ, Grasby PM, McGuire P (2011) Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry 16:67–75

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174:3–16

    Article  CAS  Google Scholar 

  • Hirose T, Kikuchi T (2005) Aripiprazole, a novel antipsychotic agent: dopamine D2 receptor partial agonist. J Med Invest 52(Suppl):284–290

    Article  PubMed  Google Scholar 

  • Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D, Valmaggia L, Allen P, Murray R, McGuire P (2011a) Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry 16:885–886

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, Murray RM, McGuire P (2011b) Dopamine synthesis capacity before onset of psychosis: a prospective [18 F]-DOPA PET imaging study. Am J Psychiatry 168:1311–1317

    PubMed  Google Scholar 

  • Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S (2009a) Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 15:2550–2559

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69:776–786

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM (2009b) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66:13–20

    Article  PubMed  Google Scholar 

  • Ito H, Hietala J, Blomqvist G, Halldin C, Farde L (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18:941–950

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Takahashi H, Arakawa R, Takano H, Suhara T (2008) Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. NeuroImage 39:555–565

    Article  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B (2010) The concurrent validity of the N-back task as a working memory measure. Memory 18:394–412

    Article  PubMed  Google Scholar 

  • Kang KW, Lee DS, Cho JH, Lee JS, Yeo JS, Lee SK, Chung JK, Lee MC (2001) Quantification of F-18 FDG PET images in temporal lobe epilepsy patients using probabilistic brain atlas. NeuroImage 14:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M, Archibald D, Ingenito G, Marcus R, Pigott T (2003) Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 6:325–337

    Article  PubMed  CAS  Google Scholar 

  • Keefe RS, Silva SG, Perkins DO, Lieberman JA (1999) The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 25:201–222

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae SA, Gonzales R, Kim JH, Alvarez B, Gil R, Laruelle M, Abi-Dargham A (2008) Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18 F]fallypride. Neuropsychopharmacology 33:3111–3125

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Howes OD, Kim BH, Jeong JM, Lee JS, Jang IJ, Shin SG, Turkheimer FE, Kapur S, Kwon JS (2012) Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab 32:759–768

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Kwon JS, Shin YW, Lee JS, Kang WJ, Jo HJ, Lee JM, Yu KS, Kang DH, Cho JY, Jang IJ, Shin SG (2008) Taq1A polymorphism in the dopamine D2 receptor gene predicts brain metabolic response to aripiprazole in healthy male volunteers. Pharmacogenet Genomics 18:91–97

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lane CJ, Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2004) Immediate effects of risperidone on cerebral activity in healthy subjects: a comparison with subjects with first-episode schizophrenia. J Psychiatry Neurosci 29:30–37

    PubMed  Google Scholar 

  • Lee JS, Lee DS (2005) Analysis of functional brain images using population-based probabilistic atlas. Curr Med Imaging Rev 1:81–87

    Article  Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) The contribution of astrocytes to the 18 F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1:445–452

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271

    Article  PubMed  CAS  Google Scholar 

  • Molina V, Gispert JD, Reig S, Pascau J, Martinez R, Sanz J, Palomo T, Desco M (2005a) Olanzapine-induced cerebral metabolic changes related to symptom improvement in schizophrenia. Int Clin Psychopharmacol 20:13–18

    Article  PubMed  Google Scholar 

  • Molina V, Gispert JD, Reig S, Sanz J, Pascau J, Santos A, Desco M, Palomo T (2005b) Cerebral metabolic changes induced by clozapine in schizophrenia and related to clinical improvement. Psychopharmacology (Berl) 178:17–26

    Article  CAS  Google Scholar 

  • Molina V, Gispert JD, Reig S, Sanz J, Pascau J, Santos A, Palomo T, Desco M (2003) Cerebral metabolism and risperidone treatment in schizophrenia. Schizophr Res 60:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ngan ET, Lane CJ, Ruth TJ, Liddle PF (2002) Immediate and delayed effects of risperidone on cerebral metabolism in neuroleptic naive schizophrenic patients: correlations with symptom change. J Neurol Neurosurg Psychiatry 72:106–110

    Article  PubMed  CAS  Google Scholar 

  • Nyberg S, Olsson H, Nilsson U, Maehlum E, Halldin C, Farde L (2002) Low striatal and extra-striatal D2 receptor occupancy during treatment with the atypical antipsychotic sertindole. Psychopharmacology (Berl) 162:37–41

    Article  CAS  Google Scholar 

  • Olsson H, Farde L (2001) Potentials and pitfalls using high affinity radioligands in PET and SPET determinations on regional drug induced D2 receptor occupancy—a simulation study based on experimental data. NeuroImage 14:936–945

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59

    Article  PubMed  Google Scholar 

  • Potkin SG, Buchsbaum MS, Jin Y, Tang C, Telford J, Friedman G, Lottenberg S, Najafi A, Gulasekaram B, Costa J et al (1994) Clozapine effects on glucose metabolic rate in striatum and frontal cortex. J Clin Psychiatry 55(B):63–66

    PubMed  Google Scholar 

  • Potkin SG, Saha AR, Kujawa MJ, Carson WH, Ali M, Stock E, Stringfellow J, Ingenito G, Marder SR (2003) Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 60:681–690

    Article  PubMed  CAS  Google Scholar 

  • Reep RL, Cheatwood JL, Corwin JV (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467:271–292

    Article  PubMed  Google Scholar 

  • Schlagenhauf F, Dinges M, Beck A, Wustenberg T, Friedel E, Dembler T, Sarkar R, Wrase J, Gallinat J, Juckel G, Heinz A (2010) Switching schizophrenia patients from typical neuroleptics to aripiprazole: effects on working memory dependent functional activation. Schizophr Res 118:189–200

    Article  PubMed  Google Scholar 

  • Simpson EH, Kellendonk C, Kandel E (2010) A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65:585–596

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Gen K, Inoue Y (2011) An unblinded comparison of the clinical and cognitive effects of switching from first-generation antipsychotics to aripiprazole, perospirone or olanzapine in patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35:161–168

    Article  PubMed  CAS  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384

    Article  PubMed  CAS  Google Scholar 

  • Yasui-Furukori N, Kaneda A, Sugawara N, Tomita T, Kaneko S (2012) Effect of adjunctive treatment with aripiprazole to atypical antipsychotics on cognitive function in schizophrenia patients. J Psychopharmacol 26:806–812

    Google Scholar 

Download references

Acknowledgements

We thank professor Sohee Park for kind and insightful comments. We also thank JaeWoo Kim, Wi Hoon Jung, Ji-young Lee and Soo Jin Kwon for their kind assistance. This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A070001). Dr. Oliver Howes is funded by grant U.1200.04.007.00001.01 from the Medical Research Council (MRC) UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Soo Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Howes, O.D., Turkheimer, F.E. et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory. Psychopharmacology 227, 221–229 (2013). https://doi.org/10.1007/s00213-012-2953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2953-0

Keywords

Navigation