Skip to main content
Log in

Sex differences in novelty- and psychostimulant-induced behaviors of C57BL/6 mice

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Women are more sensitive than men to psychostimulants and progress from initial use to drug addiction more quickly. The mouse has been an under-utilized model to study sex differences in psychostimulant action. Mice could serve as an ideal genetically tractable model for mechanistic studies into sex and hormone effects on psychostimulant behavior.

Objectives

The objective of this study was to characterize psychostimulant effects in male and female mice with a combination of automated data collection and behavioral observation.

Methods

Male and female C57BL/6 mice (Charles River) were given a single dose or sequential ascending binge doses of d-amphetamine (AMPH) or cocaine (COC). Behavior was assessed in open field chambers using both automated photobeam interruptions and behavioral observations. Brain psychostimulant concentrations were determined at the time of maximum behavioral stimulation.

Results

Psychostimulants induced behavioral activation in mice including both increased locomotion as detected with an automated system and a sequence of behaviors progressing from stereotyped sniffing at low doses to patterned locomotion and rearing at high doses. Females exhibited more patterned locomotion and a shift towards higher behavior scores after either psychostimulant despite having lower AMPH and equivalent COC brain levels as males.

Conclusions

Female C57BL/6 mice exhibit enhanced psychostimulant-induced behavior compared to males, similar to reports in rats. The combination of automated behavioral measures and behavioral observation was essential for verifying the existence of these differences. These results indicate the importance of testing both sexes when characterizing genetically manipulated mice to control for potential sex-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99:9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Laviola G (2000) A unique hormonal and behavioral hyporesponsivity to both forced novelty and d-amphetamine in periadolescent mice. Neuropharmacology 39:334–346

    Article  PubMed  CAS  Google Scholar 

  • Anker JJ, Carroll ME (2011) Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones. Curr Top Behav Neurosci 8:73–96

    Article  PubMed  CAS  Google Scholar 

  • Anker JJ, Zlebnik NE, Navin SF, Carroll ME (2011) Responding during signaled availability and nonavailability of IV cocaine and food in rats: age and sex differences. Psychopharmacology 215:785–799

    Article  PubMed  CAS  Google Scholar 

  • Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M (1998) d-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev 23:189–196

    Article  PubMed  CAS  Google Scholar 

  • Baird TJ, Gauvin D (2000) Characterization of cocaine self-administration and pharmacokinetics as a function of time of day in the rat. Pharmacol Biochem Behav 65:289–299

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW (1979) Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav 12:112–163

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW, Holzer GA (1978) Sex differences in stereotyped behavior in the rat. Pharmacol Biochem Behav 9:777–783

    Article  PubMed  CAS  Google Scholar 

  • Becker JB (1990) Direct effect of 17 beta-estradiol on striatum: sex differences in dopamine release. Synapse 5:157–164

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Beer ME (1986) The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav Brain Res 19:27–33

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Hu M (2008) Sex differences in drug abuse. Front Neuroendocrinol 29:36–47

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Ramirez VD (1981) Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res 204:361–372

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Robinson TE, Lorenz KA (1982) Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur J Pharmacol 80:65–72

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187

    Article  PubMed  CAS  Google Scholar 

  • Bowman BP, Kuhn CM (1996) Age-related differences in the chronic and acute response to cocaine in the rat. Dev Psychobiol 29:597–611

    Article  PubMed  CAS  Google Scholar 

  • Bowman BP, Vaughan SR, Walker QD, Davis SL, Little PJ, Scheffler NM, Thomas BF, Kuhn CM (1999) Effects of sex and gonadectomy on cocaine metabolism in the rat. J Pharmacol Exp Ther 290:1316–1323

    PubMed  CAS  Google Scholar 

  • Brass CA, Glick SD (1981) Sex differences in drug-induced rotation in two strains of rats. Brain Res 223:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chelaru MI, Yang PB, Dafny N (2012) Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res 226:8–17

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    Article  PubMed  CAS  Google Scholar 

  • Dafny N, Yang PB (2006) The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects. Brain Res Bull 68:393–405

    Article  PubMed  CAS  Google Scholar 

  • Danielson TJ, Davis BA, Boulton AA (1977) Species variation with respect to the metabolism and excretion of d-amphetamine and d,l-N-hydroxyamphetamine succinate. Can J Physiol Pharmacol 55:439–443

    Article  PubMed  CAS  Google Scholar 

  • Davis BA, Clinton SM, Akil H, Becker JB (2008) The effects of novelty-seeking phenotypes and sex differences on acquisition of cocaine self-administration in selectively bred high-responder and low-responder rats. Pharmacol Biochem Behav 90:331–338

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo T (1994) Modulation of brain dopamine transmission by sex steroids. Rev Neurosci 5:27–41

    Article  PubMed  Google Scholar 

  • Ellinwood EH Jr, Balster RL (1974) Rating the behavioral effects of amphetamine. Eur J Pharmacol 28:35–41

    Article  PubMed  CAS  Google Scholar 

  • Evans SM, Foltin RW (2010) Does the response to cocaine differ as a function of sex or hormonal status in human and non-human primates? Horm Behav 58:13–21

    Article  PubMed  CAS  Google Scholar 

  • Goodrich C, Lange J (1986) A differential sex effect of amphetamine on exploratory behavior in maturing mice. Physiol Behav 38:663–666

    Article  PubMed  CAS  Google Scholar 

  • Gray JA (1971) Sex differences in emotional behaviour in mammals including man: endocrine bases. Acta Psychol (Amst) 35:29–46

    Article  CAS  Google Scholar 

  • Griffin WC 3rd, Middaugh LD (2006) The influence of sex on extracellular dopamine and locomotor activity in C57BL/6J mice before and after acute cocaine challenge. Synapse 59:74–81

    Article  PubMed  CAS  Google Scholar 

  • Groppetti A, Costa E (1969) Factors affecting the rate of disappearance of amphetamine in rats. Int J Neuropharmacol 8:209–215

    Article  PubMed  CAS  Google Scholar 

  • Hooks MS, Kalivas PW (1995) The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Crombag HS, Robinson TE, Becker JB (2004) Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 29:81–85

    Article  PubMed  CAS  Google Scholar 

  • Hughes RN (1968) Behaviour of male and female rats with free choice of two environments differing in novelty. Anim Behav 16:92–96

    Article  PubMed  CAS  Google Scholar 

  • Hughes RN, Desmond CS, Fisher LC (2004) Room novelty, sex, scopolamine and their interactions as determinants of general activity and rearing, and light-dark preferences in rats. Behav Processes 67:173–181

    Article  PubMed  Google Scholar 

  • Johnson ML, Day AE, Ho CC, Walker QD, Francis R, Kuhn CM (2010a) Androgen decreases dopamine neurone survival in rat midbrain. J Neuroendocrinol 22:238–247

    Article  PubMed  CAS  Google Scholar 

  • Johnson ML, Ho CC, Day AE, Walker QD, Francis R, Kuhn CM (2010b) Oestrogen receptors enhance dopamine neurone survival in rat midbrain. J Neuroendocrinol 22:226–237

    Article  PubMed  CAS  Google Scholar 

  • Justice AJ, de Wit H (1999) Acute effects of d-amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology 145:67–75

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    Article  PubMed  CAS  Google Scholar 

  • Kuhn CM, Walker QD, Kaplan KA, Li ST (2001) Sex, steroids, and stimulant sensitivity. Ann N Y Acad Sci 937:188–201

    Article  PubMed  CAS  Google Scholar 

  • Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD (2010) The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 58:122–137

    Article  PubMed  CAS  Google Scholar 

  • Kuppers E, Krust A, Chambon P, Beyer C (2008) Functional alterations of the nigrostriatal dopamine system in estrogen receptor-alpha knockout (ERKO) mice. Psychoneuroendocrinology 33:832–838

    Article  PubMed  Google Scholar 

  • Kuzmin A, Johansson B (2000) Reinforcing and neurochemical effects of cocaine: differences among C57, DBA, and 129 mice. Pharmacol Biochem Behav 65:399–406

    Article  PubMed  CAS  Google Scholar 

  • Leibman D, Smolen A, Smolen TN (1990) Strain, sex and developmental profiles of cocaine metabolizing enzymes in mice. Pharmacol Biochem Behav 37:161–165

    Article  PubMed  CAS  Google Scholar 

  • Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE Jr (2000) Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson’s disease and memory. J Neurosci 20:8604–8609

    PubMed  CAS  Google Scholar 

  • Lin SN, Moody DE, Bigelow GE, Foltz RL (2001) A validated liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry method for quantitation of cocaine and benzoylecgonine in human plasma. J Anal Toxicol 25:497–503

    PubMed  Google Scholar 

  • Lin SN, Walsh SL, Moody DE, Foltz RL (2003) Detection and time course of cocaine N-oxide and other cocaine metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Anal Chem 75:4335–4340

    Article  PubMed  CAS  Google Scholar 

  • Lynch WJ, Roth ME, Carroll ME (2002) Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164:121–137

    Article  PubMed  CAS  Google Scholar 

  • Melega WP, Williams AE, Schmitz DA, DiStefano EW, Cho AK (1995) Pharmacokinetic and pharmacodynamic analysis of the actions of d-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exp Ther 274:90–96

    PubMed  CAS  Google Scholar 

  • Mendelson JH, Mello NK, Sholar MB, Siegel AJ, Kaufman MJ, Levin JM, Renshaw PF, Cohen BM (1999) Cocaine pharmacokinetics in men and in women during the follicular and luteal phases of the menstrual cycle. Neuropsychopharmacology 21:294–303

    Article  PubMed  CAS  Google Scholar 

  • Meyer EM Jr, Lytle LD (1978) Sex related differences in the physiological disposition of amphetamine and its metabolites in the rat. Proc West Pharmacol Soc 21:313–316

    PubMed  CAS  Google Scholar 

  • Morse AC, Erwin VG, Jones BC (1993) Strain and housing affect cocaine self-selection and open-field locomotor activity in mice. Pharmacol Biochem Behav 45:905–912

    Article  PubMed  CAS  Google Scholar 

  • Parylak SL, Caster JM, Walker QD, Kuhn CM (2008) Gonadal steroids mediate the opposite changes in cocaine-induced locomotion across adolescence in male and female rats. Pharmacol Biochem Behav 89:314–323

    Article  PubMed  CAS  Google Scholar 

  • Quintero GC, Spano D (2011) Exploration of sex differences in Rhes effects in dopamine mediated behaviors. Neuropsychiatr Dis Treat 7:697–706

    Article  PubMed  Google Scholar 

  • Quintero GC, Spano D, Lahoste GJ, Harrison LM (2008) The Ras homolog Rhes affects dopamine D1 and D2 receptor-mediated behavior in mice. Neuroreport 19:1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Reith ME, Wiener HL, Fischette CT (1991) Sertraline and cocaine-induced locomotion in mice. I. Acute studies. Psychopharmacology 103:297–305

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB, Ramirez VD (1980) Sex differences in amphetamine-elicited rotational behavior and the lateralization of striatal dopamine in rats. Brain Res Bull 5:539–545

    Article  PubMed  CAS  Google Scholar 

  • Russo SJ, Festa ED, Fabian SJ, Gazi FM, Kraish M, Jenab S, Quinones-Jenab V (2003a) Gonadal hormones differentially modulate cocaine-induced conditioned place preference in male and female rats. Neuroscience 120:523–533

    Article  PubMed  CAS  Google Scholar 

  • Russo SJ, Jenab S, Fabian SJ, Festa ED, Kemen LM, Quinones-Jenab V (2003b) Sex differences in the conditioned rewarding effects of cocaine. Brain Res 970:214–220

    Article  PubMed  CAS  Google Scholar 

  • Sahakian BJ, Robbins TW, Morgan MJ, Iversen SD (1975) The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Res 84:195–205

    Article  PubMed  CAS  Google Scholar 

  • Schlussman SD, Ho A, Zhou Y, Curtis AE, Kreek MJ (1998) Effects of “binge” pattern cocaine on stereotypy and locomotor activity in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 60:593–599

    Article  PubMed  CAS  Google Scholar 

  • Schlussman SD, Zhang Y, Kane S, Stewart CL, Ho A, Kreek MJ (2003) Locomotion, stereotypy, and dopamine D1 receptors after chronic “binge” cocaine in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 75:123–131

    Article  PubMed  CAS  Google Scholar 

  • Sershen H, Hashim A, Lajtha A (1998) Gender differences in kappa-opioid modulation of cocaine-induced behavior and NMDA-evoked dopamine release. Brain Res 801:67–71

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR (2007) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53:113–124

    Article  PubMed  CAS  Google Scholar 

  • Slawson MH, Taccogno JL, Foltz RL, Moody DE (2002) Quantitative analysis of selegiline and three metabolites (N-desmethylselegiline, methamphetamine, and amphetamine) in human plasma by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Anal Toxicol 26:430–437

    PubMed  CAS  Google Scholar 

  • Stohr T, Schulte Wermeling D, Weiner I, Feldon J (1998) Rat strain differences in open-field behavior and the locomotor stimulating and rewarding effects of amphetamine. Pharmacol Biochem Behav 59:813–818

    Article  PubMed  CAS  Google Scholar 

  • Thompson TL, Moss RL (1994) Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem 62:1750–1756

    Article  PubMed  CAS  Google Scholar 

  • Thompson ML, Shuster L, Casey E, Kanel GC (1984) Sex and strain differences in response to cocaine. Biochem Pharmacol 33:1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Caine SB (2011) Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Exp Clin Psychopharmacol 19:321–341

    Article  PubMed  CAS  Google Scholar 

  • Tolliver BK, Carney JM (1994) Sensitization to stereotypy in DBA/2J but not C57BL/6J mice with repeated cocaine. Pharmacol Biochem Behav 48:169–173

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M, Halley P, Hill R, Labots M, Martin S (2012) Altered N-methyl-d-aspartate receptor function in reelin heterozygous mice: male–female differences and comparison with dopaminergic activity. Prog Neuropsychopharmacol Biol Psychiatry 37:237–246

    Article  PubMed  Google Scholar 

  • van Haaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927

    Article  PubMed  Google Scholar 

  • Visalli T, Turkall R, Abdel-Rahman MS (2005) Gender differences in cocaine pharmacokinetics in CF-1 mice. Toxicol Lett 155: 35–40

    Google Scholar 

  • Walker QD, Cabassa J, Kaplan KA, Li ST, Haroon J, Spohr HA, Kuhn CM (2001) Sex differences in cocaine-stimulated motor behavior: disparate effects of gonadectomy. Neuropsychopharmacology 25:118–130

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Nelson CJ, Smith D, Kuhn CM (2002) Vaginal lavage attenuates cocaine-stimulated activity and establishes place preference in rats. Pharmacol Biochem Behav 73:743–752

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Williams CN, Jotwani RP, Waller ST, Francis R, Kuhn CM (2007) Sex differences in the neurochemical and functional effects of MDMA in Sprague-Dawley rats. Psychopharmacology 189:435–445

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Schramm-Sapyta NL, Caster JM, Waller ST, Brooks MP, Kuhn CM (2009) Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults. Pharmacol Biochem Behav 91:398–408

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Johnson ML, Van Swearingen AE, Arrant AE, Caster JM, Kuhn CM (2012) Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology 62:2266–2276

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the lab of Dr. David Moody at the Center for Human Toxicology, University of Utah for the assessment of psychostimulant concentrations. We also thank Dr. Nicole Schramm-Sapyta, Andrew Arrant, Suzanne Frisbee, Caroline Biskup, and Alex Jaeger for assistance with this study. All experiments in this study comply with current United States laws.

Funding

This work was supported by the National Institute of Drug Abuse [Contract N01DA-9-7767 with Dr. Moody at the University of Utah and Grant DA009079 to Dr. Kuhn].

Conflict of interest

The authors have no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia M. Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Swearingen, A.E.D., Walker, Q.D. & Kuhn, C.M. Sex differences in novelty- and psychostimulant-induced behaviors of C57BL/6 mice. Psychopharmacology 225, 707–718 (2013). https://doi.org/10.1007/s00213-012-2860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2860-4

Keywords

Navigation