Skip to main content
Log in

Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Epilepsy often coexists with depression. Therefore, the probability of simultaneous treatment with antiepileptics and antidepressants and the possibility of interactions between them are relatively high.

Objective

The effects of acute and chronic administration of mianserin on the protective activity of valproate (VPA), carbamazepine, phenytoin, and phenobarbital were evaluated in the maximal electroshock in mice.

Materials and methods

Animals were subjected to electroconvulsions. Undesired effects were evaluated in the chimney test (motor impairment) and passive-avoidance task (memory deficit). Brain concentrations of antiepileptic drugs were assessed by immunofluorescence.

Results

When given acutely, mianserin (at doses greater than or equal to 20 mg/kg) significantly raised the electroconvulsive threshold. The antidepressant, at the subanticonvulsant doses, enhanced the anticonvulsant action of carbamazepine, phenytoin, and VPA.

Mianserin administered chronically at 30 mg/kg significantly decreased the electroconvulsive threshold. In contrast to acute treatment, the antidepressant at subeffective doses diminished the anticonvulsant activity of VPA and phenytoin. Mianserin given either acutely or chronically did not affect the brain concentrations of antiepileptic drugs, so a pharmacokinetic contribution to the observed interactions is not probable.

Acute and chronic treatment with mianserin and its combinations with antiepileptic drugs did not impair either motor coordination or long-term memory.

Conclusion

Although acute application of mianserin may potentiate the anticonvulsant action of some antiepileptics, its chronic administration can lead to the opposite effect. Therefore, as far as the presented results can be transferred to clinical conditions, the antidepressant therapy with mianserin should be limited or even avoided in epileptic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altamura AC, De Novellis F, Mauri MC, Gomeni R (1987) Plasma and brain pharmacokinatics of mianserin after single and multiple dosing in mice. Prog Neuro-psychopharmacol Biol Psychiatry 11:23–33

    Article  CAS  Google Scholar 

  • Altenburg SP, Farah MB (1999) Tizanidine protects mice against convulsions induced by lidocaine: involvement of alpha 2-adrenoceptors. Pharmacol Toxicol 84:29–33

    PubMed  CAS  Google Scholar 

  • Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66

    Article  PubMed  CAS  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle methode simple pour explorer l’action tranquilisante: le test de la cheminee. Med Exp (Basel) 3:81–84

    Article  CAS  Google Scholar 

  • Borowicz KK, Stepien K, Czuczwar SJ (2006) Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol Rep 58:83–90

    PubMed  CAS  Google Scholar 

  • Borowicz KK, Furmanek-Karwowska K, Sawicka K, Luszczki JJ, Czuczwar SJ (2007) Chronically administered fluoxetine enhances the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Eur J Pharmacol 567:77–82

    Article  PubMed  CAS  Google Scholar 

  • Denizbasi A, Özyazgan S, Eskazan E (1999) The effect of tizanidine on maximal electroshock seizures (MES) in mice. Gen Pharmacol 32:513–516

    PubMed  CAS  Google Scholar 

  • Edwards JG, Glen-Bott M (1983) Mianserin and convulsive seizures. Br J Clin Pharmacol 15(Suppl 2):299S–311S

    PubMed  Google Scholar 

  • Edwards J, Wheal H (1992) Assessment of epileptogenic potential: experimental, clinical and epidemiological approaches. J Psychopharmacol 6:204–213

    Article  Google Scholar 

  • Jackson HC, Dickinson SL, Nutt DJ (1991) Exploring the pharmacology of the proconvulsant effects of alpha 2-adrenoceptor antagonists in mice. Psychopharmacology 105:558–562

    Article  PubMed  CAS  Google Scholar 

  • Jobe PC (2003) Common pathogenic mechanisms between depression and epilepsy: an experimental perspective. Epilepsy Behav 4:S14–S24

    Article  PubMed  Google Scholar 

  • Jobe CJ, Browning RA (2005) The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav 7:602–619

    Article  PubMed  Google Scholar 

  • Kleinrok Z, Gustaw J, Czuczwar SJ (1991) Influence of antidepressant drugs on seizure susceptibility and the anticonvulsant activity of valproate in mice. J Neural Transm Suppl 34:85–90

    PubMed  CAS  Google Scholar 

  • Knobloch LC, Goldstein JM, Malick JB (1982) Effects of acute and subacute antidepressant treatment on kindled seizures in rats. Pharmacol Biochem Behav 17:461–465

    Article  PubMed  CAS  Google Scholar 

  • Krijzer F, Snelder M, Bradford D (1984) Comparison of the proconvulsive properties of fluvoxamine and clovoxamine with eight other antidepressants in an animal model. Neuropsychobiology 12:249–254

    Article  PubMed  CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose–effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Löscher W, Czuczwar SJ (1987) Comparison of drugs with different selectivity for central alpha 1- and alpha 2-adrenoceptors in animal models of epilepsy. Epilepsy Res 1:165–172

    Article  PubMed  Google Scholar 

  • Malatynska E, Knapp RJ, Ikeda M, Yamamura HI (1988) Antidepressants and seizure—interactions at the GABA-receptor chloride-ionophore complex. Life Sci 43:303–307

    Article  PubMed  CAS  Google Scholar 

  • Pericic D, Strac DS, Vlainic J (2006) Zimelidine increases seizure susceptibility in stressed mice. J Neural Transm 113:1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Peterson SL, Trzeciakowski JP, St Mary JS (1985) Chronic but nor acute treatment with antidepressants enhances the electroconvulsive seizure response in rats. Neuropharmacology 24:941–946

    Article  PubMed  CAS  Google Scholar 

  • Pinder RM (1985) Adrenoreceptor interactions in the enantiomers and metabolites of mianserin: are they responsible for the antidepressant effect? Acta Psychiatr Scand Suppl 320:1–9

    Article  PubMed  CAS  Google Scholar 

  • Porecca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  Google Scholar 

  • Rosenstein DL, Nelson JC, Jacobs SC (1993) Seizures associated with antidepressants: a review. J Clin Psychiatry 54:289–299

    PubMed  CAS  Google Scholar 

  • Salzberg MR, Vajda FJE (2001) Epilepsy, depression and antidepressant drugs. J Clin Neurosci 8:209–215

    Article  PubMed  CAS  Google Scholar 

  • Saxena PR (1995) Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacol Ther 66:339–368

    Article  PubMed  CAS  Google Scholar 

  • Semenova TP, Ticku MK (1992) Effects of 5-HT receptor antagonists on seizure susceptibility and locomotor activity in DBA/2 mice. Brain Res 588:229–236

    Article  PubMed  CAS  Google Scholar 

  • Squires RF, Saederup E (1988) Antidepressants and metabolites that block GABAA receptors coupled to 35S-t-butylbicyclophosphorothionate binding sites in rat brain. Brain Res 441:15–22

    Article  PubMed  CAS  Google Scholar 

  • Statnick MA, Maring-Smith ML, Clough RW, Wang C, Dailey JW, Jobe PC, Browning RA (1996) Effect of 5,7-dihydroxytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci 69:1763–1771

    Article  Google Scholar 

  • Tsuda H, Ito M, Oguro K, Mutoh K, Shirashi H, Shirasaka Y, Mikawa H (1990) Involvement of the noradrenergic system in the seizures of epileptic El mice. Eur J Pharmacol 176:321–330

    Article  PubMed  CAS  Google Scholar 

  • Venault P, Chapouthier G, De Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepines impair and beta-carbolines enhance performance in learning and memory tasks. Nature 321:864–866

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Mishra PK, Dailey JW, Jobe PC, Browning RA (1994) Noradrenergic terminal fields as determinants of seizure predisposition in GEPR-3s: a neuroanatomic assessment with intracerebral microinjections of 6-hydroxydopamine. Epilepsy Res 18:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the grant from Lublin Medical University, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga K. Borowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowicz, K.K., Banach, M., Zarczuk, R. et al. Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Psychopharmacology 195, 167–174 (2007). https://doi.org/10.1007/s00213-007-0878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0878-9

Keywords

Navigation