Skip to main content
Log in

Pharmacological and behavioral determinants of cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, and para-methoxyamphetamine-induced hyperthermia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), and para-methoxyamphetamine (PMA) disrupt normal thermoregulation in humans, with PMA being associated with more severe cases of hyperthermia. Harm minimization advice on how to prevent overheating depends on appropriate thermoregulatory behavior by drug users.

Objectives

The purpose of the current study was to establish dose–response relationships for the effects of a number of commonly used illicit stimulants and investigate the behavioral response to increased core temperature.

Materials and methods

Sprague–Dawley rats with telemetry implants were administered either saline or 4, 12, 26, 40 or 80 μmol/kg of cocaine, methamphetamine, MDMA, or PMA and confined to an ambient temperature of 30°C for 30 min, before being able to choose their preferred temperature on a thermally graded runway (11–41°C).

Results

The increased core temperature caused by administration of cocaine, methamphetamine, and MDMA treatment led to the animals seeking the cool end of the runway to correct their core temperature, although this did not occur in PMA-treated rats. The order of potency for increasing core temperature was methamphetamine >PMA = MDMA>cocaine. This differed to the slopes of the dose–response curves where MDMA and PMA showed the steepest slope for the doses used followed by methamphetamine then cocaine.

Conclusions

These results suggest that behavioral aspects of thermoregulation are important in assessing the potential of individual drugs to cause harmful increases in core temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attia M (1984) Thermal pleasantness and temperature regulation in man. Neurosci Biobehav Rev 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Bexis S, Phillis BD, Ong J, White JM, Irvine RJ (2004) Baclofen prevents MDMA-induced rise in core body temperature in rats. Drug Alcohol Depend 74:89–96

    Article  PubMed  CAS  Google Scholar 

  • Blessing WW, Seaman B, Pedersen NP, Ootsuka Y (2003) Clozapine reverses hyperthermia and sympathetically mediated cutaneous vasoconstriction induced by 3,4-methylenedioxymethamphetamine (ecstasy) in rabbits and rats. J Neurosci 23:6385–6391

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Tank AW, Newport GD, Slikker W Jr, Ali SF, Holson RR (1992) The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum. J Pharmacol Exp Ther 260:817–824

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W Jr, Holson RR (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 268:1571–1580

    PubMed  CAS  Google Scholar 

  • Broening HW, Morford LL, Vorhees CV (2005) Interactions of dopamine D1 and D2 receptor antagonists with d-methamphetamine-induced hyperthermia and striatal dopamine and serotonin reductions. Synapse 56:84–93

    Article  PubMed  CAS  Google Scholar 

  • Caldicott DG, Edwards NA, Kruys A, Kirkbride KP, Sims DN, Byard RW, Prior M, Irvine RJ (2003) Dancing with “death”: p-methoxyamphetamine overdose and its acute management. J Toxicol Clin Toxicol 41:143–154

    Article  PubMed  CAS  Google Scholar 

  • Callaghan PD, Farrand K, Salem A, Hughes P, Daws LC, Irvine RJ (2006) Repeated administration of the substituted amphetamine p-methoxyamphetamine produces reductions in cortical 5-HT transporter binding but not 5-HT content, unlike 3,4-methylenedioxyamethamphetamine. Eur J Pharmacol 546:74–81

    Article  PubMed  CAS  Google Scholar 

  • Callaghan PD, Owens WA, Javors MA, Sanchez TA, Jones DJ, Irvine RJ, Daws LC (2007) In vivo analysis of serotonin clearance in rat hippocampus reveals that repeated administration of p-methoxyamphetamine (PMA), but not 3,4-methylenedioxymethamphetamine (MDMA), leads to long-lasting deficits in serotonin transporter function. J Neurochem 100:617–627

    Article  PubMed  CAS  Google Scholar 

  • Cappon GD, Morford LL, Vorhees CV (1998) Enhancement of cocaine-induced hyperthermia fails to elicit neurotoxicity. Neurotoxicol Teratol 20:531–535

    Article  PubMed  CAS  Google Scholar 

  • Chambers JB, Williams TD, Nakamura A, Henderson RP, Overton JM, Rashotte ME (2000) Cardiovascular and metabolic responses of hypertensive and normotensive rats to one week of cold exposure. Am J Physiol Regul Integr Comp Physiol 279:R1486–R1494

    PubMed  CAS  Google Scholar 

  • Clemens KJ, Van Nieuwenhuyzen PS, Li KM, Cornish JL, Hunt GE, McGregor IS (2004) MDMA (“ecstasy”), methamphetamine and their combination: long-term changes in social interaction and neurochemistry in the rat. Psychopharmacology (Berl) 173:318–325

    Article  CAS  Google Scholar 

  • Clemens KJ, Cornish JL, Li KM, Hunt GE, McGregor IS (2005) MDMA (‘Ecstasy’) and methamphetamine combined: order of administration influences hyperthermic and long-term adverse effects in female rats. Neuropharmacology 49:195–207

    Article  PubMed  CAS  Google Scholar 

  • Crandall CG, Vongpatanasin W, Victor RG (2002) Mechanism of cocaine-induced hyperthermia in humans. Ann Intern Med 136:785–791

    PubMed  CAS  Google Scholar 

  • Daws LC, Irvine RJ, Callaghan PD, Toop NP, White JM, Bochner F (2000a) Differential behavioural and neurochemical effects of para-methoxyamphetamine and 3,4-methylenedioxymethamphetamine in the rat. Prog Neuropsychopharmacol Biol Psychiatry 24:955–977

    Article  PubMed  CAS  Google Scholar 

  • Daws LC, Irvine RJ, Callaghan PD, Toop NP, White JM, Bochner F (2000b) Differential behavioural and neurochemical effects of para-methoxyamphetamine and 3,4-methylenedioxymethamphetamine in the rat. Prog Neuropsychopharmacol Biol Psychiatry 24:955–977

    Article  PubMed  CAS  Google Scholar 

  • de la Torre R, Farre M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508

    Article  PubMed  Google Scholar 

  • de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, Segura J, Cami J (2000) Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 49:104–109

    Article  PubMed  Google Scholar 

  • Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210

    Article  PubMed  CAS  Google Scholar 

  • Florez-Duquet M, Peloso E, Satinoff E (2001) Fever and behavioral thermoregulation in young and old rats. Am J Physiol Regul Integr Comp Physiol 280:R1457–1461

    PubMed  CAS  Google Scholar 

  • Gonzalez LP (1993) Cocaine alters body temperature and behavioral thermoregulatory responses. Neuroreport 4:106–108

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (1987) Relationship between preferred ambient temperature and autonomic thermoregulatory function in rat. Am J Physiol 252:R1130–R1137

    PubMed  CAS  Google Scholar 

  • Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    Article  PubMed  CAS  Google Scholar 

  • Gowing LR, Henry-Edwards SM, Irvine RJ, Ali RL (2002) The health effects of ecstasy: a literature review. Drug Alcohol Rev 21:53–63

    Article  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Green AR, O’Shea E, Colado MI (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13

    Article  PubMed  CAS  Google Scholar 

  • Irvine RJ, Keane M, Felgate P, McCann UD, Callaghan PD, White JM (2006) Plasma drug concentrations and physiological measures in ‘dance party’ participants. Neuropsychopharmacology 31:424–430

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y (2002) Functional role of the preoptic area and anterior hypothalamus in thermoregulation in freely moving rats. Neurosci Lett 325:167–170

    Article  PubMed  CAS  Google Scholar 

  • Jaehne EJ, Salem A, Irvine RJ (2005) Effects of 3,4-methylenedioxymethamphetamine and related amphetamines on autonomic and behavioral thermoregulation. Pharmacol Biochem Behav 81:485–496

    Article  PubMed  CAS  Google Scholar 

  • Kalant H (2001) The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. CMAJ 165:917–928

    PubMed  CAS  Google Scholar 

  • Kita T, Wagner GC, Nakashima T (2003) Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 92:178–195

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL (2005) Dopamine-dependent and dopamine-independent actions of cocaine as revealed by brain thermorecording in freely moving rats. Eur J Neurosci 22:930–938

    Article  PubMed  Google Scholar 

  • Kojima T, Une I, Yashiki M, Noda J, Sakai K, Yamamoto K (1984) A fatal methamphetamine poisoning associated with hyperpyrexia. Forensic Sci Int 24:87–93

    Article  PubMed  CAS  Google Scholar 

  • Law MY, Moody DE (1994) Urinary excretion of amphetamine and 4′-hydroxyamphetamine by Sprague Dawley and dark Agouti rats. Life Sci 54:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Ling LH, Marchant C, Buckley NA, Prior M, Irvine RJ (2001) Poisoning with the recreational drug paramethoxyamphetamine (“death”). Med J Aust 174:453–455

    PubMed  CAS  Google Scholar 

  • Lomax P, Daniel KA (1990) Cocaine and body temperature in the rat: effects of ambient temperature. Pharmacology 40:103–109

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    PubMed  CAS  Google Scholar 

  • Malberg JE, Sabol KE, Seiden LS (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat. J Pharmacol Exp Ther 278:258–267

    PubMed  CAS  Google Scholar 

  • Marzuk PM, Tardiff K, Leon AC, Hirsch CS, Portera L, Iqbal MI, Nock MK, Hartwell N (1998) Ambient temperature and mortality from unintentional cocaine overdose. JAMA 279:1795–1800

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • McNamara R, Kerans A, O’Neill B, Harkin A (2006) Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“ecstasy”) and MDA (“love”). Neuropharmacology 50:69–80

    Article  PubMed  CAS  Google Scholar 

  • Mechan AO, Esteban B, O’Shea E, Elliott JM, Colado MI, Green AR (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) to rats. Br J Pharmacol 135:170–180

    Article  PubMed  CAS  Google Scholar 

  • Morishima MS, Gale CC (1972) Relationship of blood pressure and heart rate to body temperature in baboons. Am J Physiol 223:387–395

    PubMed  CAS  Google Scholar 

  • Nash JF Jr, Meltzer HY, Gudelsky GA (1988) Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 245:873–879

    PubMed  CAS  Google Scholar 

  • O’Shea E, Escobedo I, Orio L, Sanchez V, Navarro M, Green AR, Colado MI (2005) Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats. Neuropsychopharmacology 30:1312–1323

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2002) Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol Biochem Behav 71:837–844

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC, Rodgers J, Buchanan T, Ling J, Heffernan T, Scholey AB (2006) Dancing hot on ecstasy: physical activity and thermal comfort ratings are associated with the memory and other psychobiological problems reported by recreational MDMA users. Hum Psychopharmacol 21:285–298

    Article  PubMed  CAS  Google Scholar 

  • Saadat KS, O’Shea E, Colado MI, Elliott JM, Green AR (2005) The role of 5-HT in the impairment of thermoregulation observed in rats administered MDMA (’ecstasy’) when housed at high ambient temperature. Psychopharmacol (Berl) 179:884–890

    Article  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VL (1990) Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res 529:85–90

    Article  PubMed  CAS  Google Scholar 

  • Sessler DI (1997) Mild perioperative hypothermia. N Engl J Med 336:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Sprague JE, Mallett NM, Rusyniak DE, Mills E (2004) UCP3 and thyroid hormone involvement in methamphetamine-induced hyperthermia. Biochem Pharmacol 68:1339–1343

    Article  PubMed  CAS  Google Scholar 

  • Stanley N, Salem A, Irvine RJ (2007) The effects of co-administration of 3,4-methylenedioxymethamphetamine (“ecstasy”) or para-methoxyamphetamine and moclobemide at elevated ambient temperatures on striatal 5-HT, body temperature and behavior in rats. Neuroscience 146(1):321–329

    Article  PubMed  CAS  Google Scholar 

  • United Nations (2006) World Drug Report 2006. United Nations Office on Drugs and Crime

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  • Vongpatanasin W, Mansour Y, Chavoshan B, Arbique D, Victor RG (1999) Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation 100:497–502

    PubMed  CAS  Google Scholar 

  • Wang X, Baumann MH, Xu H, Rothman RB (2004) 3,4-Methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53:240–248

    Article  PubMed  CAS  Google Scholar 

  • Williamson S, Gossop M, Powis B, Griffiths P, Fountain J, Strang J (1997) Adverse effects of stimulant drugs in a community sample of drug users. Drug Alcohol Depend 44:87–94

    Article  PubMed  CAS  Google Scholar 

  • Xie T, McCann UD, Kim S, Yuan J, Ricaurte GA (2000) Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 20:7838–7845

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Health and Medical Research Council of Australia for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Joy Jaehne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaehne, E.J., Salem, A. & Irvine, R.J. Pharmacological and behavioral determinants of cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, and para-methoxyamphetamine-induced hyperthermia. Psychopharmacology 194, 41–52 (2007). https://doi.org/10.1007/s00213-007-0825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0825-9

Keywords

Navigation