Skip to main content
Log in

Confirmation of quantitative trait loci for ethanol sensitivity and neurotensin receptor density in crosses derived from the inbred High and Low Alcohol Sensitive selectively bred rat lines

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Genetically influenced alcohol sensitivity is thought to be an important risk factor for the development of alcoholism. An effective first step for identifying genes that mediate variation in alcohol sensitivity is through quantitative trait loci (QTL) mapping in model organisms.

Objective

Fourteen provisional QTLs related to alcohol sensitivity were previously mapped in an F2 derived from the IHAS1 and ILAS1 rat lines. The objective of the current study was to confirm those QTLs in an independently derived F2 and in congenics that were bred for two of the loci.

Materials and methods

IHAS1 X ILAS1 F2 (n=450) were tested for alcohol-induced loss of righting reflex (LORR), blood ethanol concentration at regain of righting reflex (BECRR), sensitivity and acute tolerance on the Rotarod, and neurotensin receptor density (NTR1). Rats were genotyped at the 14 candidate loci and QTL mapping was conducted. Reciprocal congenic strains were bred for loci on chromosomes 2 and 5 and tested for LORR and BECRR.

Results

Four LORR QTLs were mapped at the suggestive or significant level (chromosomes 2, 5, 12, and 13). BECRR was mapped to chromosomes 5, 12, and 13 either in the original or current experiment. Results of the congenic experiment also support QTLs for LORR and BECRR on chromosomes 2 and 5. QTLs for NTR1 density and behavior on the Rotarod were not confirmed.

Conclusions

QTL mapping in crosses derived from the IHAS1 and ILAS1 has successfully identified loci related to alcohol sensitivity. Recombinant congenics are now being bred to more finely map the confirmed QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Dermant P, Doerge RW, Elliot RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gibson JP, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FF, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittlemann G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    PubMed  Google Scholar 

  • Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Allan AM, Huidobro-Toro JP, Bleck V, Harris RA (1987) Alcohol and the GABA receptor-chloride channel complex of brain. Alcohol Alcohol Suppl 1:643–646

    PubMed  CAS  Google Scholar 

  • Belknap JK, Mitchell SR, O’Toole LA, Helms ML, Crabbe JC (1996) Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet 26:149–160

    Article  PubMed  CAS  Google Scholar 

  • Bennett B, Beeson M, Gordon L, Carosone-Link P, Johnson TE (2002) Genetic dissection of quantitative trait loci specifying sedative/hypnotic sensitivity to ethanol: Mapping with interval-specific congenic, recombinant lines. Alcohol Clin Exp Res 26:1615–1624

    PubMed  CAS  Google Scholar 

  • Campbell AD, Erwin VG (1993) Chronic ethanol administration downregulates neurotensin receptors in long- and short-sleep mice. Pharmacol Biochem Behav 45:95–106

    Article  PubMed  CAS  Google Scholar 

  • Christensen SC, Johnson TE, Markel PD, Clark VJ, Fulker DW, Corley RP, Collins AC, Wehner JM (1996) Quantitative trait locus analyses of sleep-times induced by sedative-hypnotics in LSXSS recombinant inbred strains of mice. Alcohol Clin Exp Res 20:543–550

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Gallaher ES, Phillips TJ, Belknap JK (1994a) Genetic determinants of sensitivity to ethanol in inbred mice. Behav Neurosci 108:186–195

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Belknap JK, Buck KJ, Metten P (1994b) Use of recombinant inbred strains for studying genetic determinants of responses to alcohol. Alcohol Alcohol Suppl 2:67–71

    PubMed  CAS  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  PubMed  CAS  Google Scholar 

  • Deitrich RA, Spuhler KP, Baker RC, Erwin VG (1988) Development and characteristics of rats selectively bred for sensitivity to ethanol. In: Kuriyama K, Takada A, Ishii H (eds) Biomedical and social aspects of alcohol and alcoholism. Elsevier Science B.V., pp 419–422

  • Deitrich RA, Draski LJ, Baker RC (1994) Effect of pentobarbital and gaseous anesthetics on rats selectively bred for ethanol sensitivity. Pharmacol Biochem Behav 47:721–725

    Article  PubMed  CAS  Google Scholar 

  • Demarest K, McCaughran J Jr, Mahjubi E, Cipp L, Hitzemann R (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 19:549–561

    PubMed  CAS  Google Scholar 

  • Draski LJ, Spuhler KP, Erwin VG, Baker RC, Deitrich RA (1992) Selective breeding of rats differing in sensitivity to the effects of acute ethanol administration. Alcohol Clin Exp Res 16:48–54

    Article  PubMed  CAS  Google Scholar 

  • Draski LJ, Deitrich RA, Menez JF (1997) Phenobarbital sensitivity in HAS and LAS rats before and after chronic administration of ethanol. Pharmacol Biochem Behav 57:651–657

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Korte A (1988) Brain neurotensin receptors in mice bred for differences in sensitivity to ethanol. Alcohol 5:195–201

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Jones BC (1989) Comparison of neurotensin levels, receptors and actions in LS/Ibg and SS/Ibg mice. Peptides 10:435–440

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Jones BC (1993) Genetic correlations among ethanol-related behaviors and neurotensin receptors in long sleep (LS) × short sleep (SS) recombinant inbred strains of mice. Behav Genet 23:191–196

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Heston WDW, McClearn GE, Deitrich RA (1976) Effect of hypnotics on mice genetically selected for sensitivity to ethanol. Pharmacol Biochem Behav 4:679–683

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Draski LJ, Deitrich RA (1996) Neurotensin levels and receptors in HAS and LAS rat brains: effects of ethanol. Pharmacol Biochem Behav 54:525–532

    Article  PubMed  CAS  Google Scholar 

  • Erwin VG, Markel PD, Johnson TE, Gehle VM, Jones BC (1997) Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: hypnotic and hypothermic effects. J Pharmacol Exp Ther 280:911–918

    PubMed  CAS  Google Scholar 

  • Erwin VG, Gehle VM, Davidson KL, Radcliffe RA (2001) Confirmation of correlations and common quantitative trait loci between neurotensin receptor density and hypnotic sensitivity to ethanol. Alcohol Clin Exp Res 25:1699–1707

    Article  PubMed  CAS  Google Scholar 

  • Finn PR, Pihl RO (1987) Men at risk for alcoholism: the effect of alcohol on cardiovascular response to unavoidable shock. J Abnorm Psychol 96:230–236

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  PubMed  CAS  Google Scholar 

  • Garlow SJ, Boone E, Kinkead B, Nemeroff CB (2006) Genetic analysis of the hypothalamic neurotensin system. Neuropsychopharmacology 31:535–543

    Article  PubMed  CAS  Google Scholar 

  • Gianoulakis C, Beliveau D, Angelogianni P, Meaney M, Thavundayil J, Tawar V, Dumas M (1989) Different pituitary β-endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism. Life Sci 45:1097–1109

    Article  PubMed  CAS  Google Scholar 

  • Gill K, Desaulniers N, Desjardins P, Lake K (1998) Alcohol preference in AXB/BXA recombinant inbred mice: gender differences and gender-specific quantitative trait loci. Mamm Genome 9:929–935

    Article  PubMed  CAS  Google Scholar 

  • Heath AC, Madden PA, Bucholz KK, Dinwiddie SH, Slutske WS, Bierut LJ, Rohrbaugh JW, Statham DJ, Dunne MP, Whitfield JB, Martin NG (1999) Genetic differences in alcohol sensitivity and the inheritance of alcoholism risk. Psychol Med 29:1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Keir WJ, Deitrich RA (1990) Development of central nervous system sensitivity to ethanol and pentobarbital in short- and long-sleep mice. J Pharmacol Exp Ther 254:831–835

    PubMed  CAS  Google Scholar 

  • King AC, Houle T, de Wit H, Holdstock L, Schuster A (2002) Biphasic alcohol response differs in heavy versus light drinkers. Alcohol Clin Exp Res 26:827–835

    PubMed  CAS  Google Scholar 

  • Kitabgi P, Carraway R, Van Rietschoten J, Granier C, Morgat JL, Menez A, Leeman SE, Freychet P (1977) Neurotensin: specific binding to synaptic membranes from rat brain. Proc Natl Acad Sci USA 74:1846–1850

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Deitrich R (1998) Role of GABA in the actions of ethanol in rats selectively bred for ethanol sensitivity. Pharmacol Biochem Behav 60:793–801

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lundquist F (1959) The determination of ethyl alcohol in blood and tissue. Methods Biochem Anal 7:217–251

    Article  CAS  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Markel PD, Fulker DW, Bennett B, Corley RP, DeFries JC, Erwin VG, Johnson TE (1996) Quantitative trait loci for ethanol sensitivity in the LSXSS recombinant inbred strains: interval mapping. Behav Genet 26:447–458

    Article  PubMed  CAS  Google Scholar 

  • Martin NG (1988) Twin studies of alcohol consumption, metabolism, and sensitivity. Aust Drug Alcohol Rev 7:9–12

    Article  Google Scholar 

  • McClearn GE, Kakihana R (1981) Selective breeding for ethanol sensitivity: short-sleep and long-sleep mice. In: McClearn GE, Deitrich RA, Erwin VG (eds) Development of animal models as pharmacogenetic tools. NIAAA Research Monograph, Rockville, Maryland, pp 147–159

    Google Scholar 

  • Morzorati SL, Ramchandani VA, Flury L, Li TK, O’Connor S (2002) Self-reported subjective perception of intoxication reflects family history of alcoholism when breath alcohol levels are constant. Alcohol Clin Exp Res 26:1299–1306

    PubMed  Google Scholar 

  • Newlin DB, Thomson JB (1990) Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull 108:383–402

    Article  PubMed  CAS  Google Scholar 

  • Newlin DB, Thomson JB (1991) Chronic tolerance and sensitization to alcohol in sons of alcoholics. Alcohol Clin Exp Res 15:399–405

    Article  PubMed  CAS  Google Scholar 

  • Newlin DB, Thomson JB (1999) Chronic tolerance and sensitization to alcohol in sons of alcoholics: II. Replication and reanalysis. Exp Clin Psychopharmacol 7:234–243

    Article  PubMed  CAS  Google Scholar 

  • Owens JC, Bennett B, Johnson TE (2001) Evidence that the Lore-1 region specifies ethanol-induced activation in addition to sedative/hypnotic sensitivity to ethanol. Alcohol Clin Exp Res 25:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Palmer MR, Wang Y, Fossom LH, Spuhler KP (1987) Genetic correlation of ethanol-induced ataxia and cerebellar Purkinje neuron depression among inbred strains and selected lines of rats. Alcohol Clin Exp Res 11:494–501

    Article  PubMed  CAS  Google Scholar 

  • Palmer MR, Harlan JT, Spuhler K (1992) Genetic covariation in low alcohol-sensitive and high alcohol-sensitive selected lines of rats: behavioral and electrophysiological sensitivities to the depressant effects of ethanol and the development of acute neuronal tolerance to ethanol in situ at generation eight. J Pharmacol Exp Ther 260:879–886

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Peirce JL, Derr R, Shendure J, Kolata T, Silver LM (1998) A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mamm Genome 9:942–948

    Article  PubMed  CAS  Google Scholar 

  • Peterson JB, Pihl RO, Gianoulakis C, Conrod P, Finn PR, Stewart SH, LeMarquand DG, Bruce KR (1996) Ethanol-induced change in cardiac and endogenous opiate function and risk for alcoholism. Alcohol Clin Exp Res 20:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe RA, Jones BC, Erwin VG (1998) Mapping of provisional quantitative trait loci influencing temporal variation in locomotor activity in the LS × SS recombinant inbred strains. Behav Genet 28:39–47

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe RA, Bohl ML, Lowe MV, Cycowski CS, Wehner JM (2000) Mapping of quantitative trait loci for hypnotic sensitivity to ethanol in crosses derived from the C57BL/6 and DBA/2 mouse strains. Alcohol Clin Exp Res 24:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe RA, Erwin VG, Draski L, Hoffmann S, Edwards J, Deng XS, Bludeau P, Fay T, Lundquist K, Asperi W, Deitrich RA (2004) Quantitative trait loci mapping for ethanol sensitivity and neurotensin receptor density in an F2 intercross derived from inbred high and low alcohol sensitivity selectively bred rat lines. Alcohol Clin Exp Res 28:1796–1804

    Article  PubMed  CAS  Google Scholar 

  • Rat Genome Data (2005) Rat Genome Database Web Site, Medical College of Wisconsin, Milwaukee, Wisconsin. Available at http://rgd.mcw.edu/. November, 2005

  • Schuckit MA (1984) Subjective responses to alcohol in sons of alcoholics and control subjects. Arch Gen Psychiatry 41:879–884

    PubMed  CAS  Google Scholar 

  • Schuckit MA (2002) Vulnerability factors for alcoholism. In: Davis K (ed) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Baltimore, pp 1399–1411

    Google Scholar 

  • Seiger A, Sorensen SM, Palmer MR (1983) Cerebellar role in the differential ethanol sensitivity of long sleep and short sleep mice. Pharmacol Biochem Behav 18(Suppl 1):495–499

    Article  PubMed  Google Scholar 

  • Sorensen S, Palmer M, Dunwiddie TV, Hoffer B (1980) Electrophysiological correlates of ethanol-induced sedation in differentially sensitive lines of mice. Science 210:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Spuhler K, Hoffer B, Weiner N, Palmer M (1982) Evidence for genetic correlation of hypnotic effects and cerebellar Purkinje neuron depression in response to ethanol in mice. Pharmacol Biochem Behav 17:569–578

    Article  PubMed  CAS  Google Scholar 

  • Spuhler K, Deitrich RA, Baker RC (1990) Selective breeding of rats differing in sensitivity to the hypnotic effects of acute ethanol administration. In: Deitrich RA, Pawlowski AA (eds) Initial sensitivity to alcohol. National Institute on Alcohol Abuse and Alcoholism, Rockville Maryland, pp 87–102

    Google Scholar 

  • Terenina-Rigaldie E, Moisan MP, Colas A, Beauge F, Shah KV, Jones BC, Mormede P (2003) Genetics of behaviour: phenotypic and molecular study of rats derived from high- and low-alcohol consuming lines. Pharmacogenetics 13:543–554

    Article  PubMed  Google Scholar 

  • Viken RJ, Rose RJ, Morzorati SL, Christian JC, Li T-K (2003) Subjective intoxication in response to alcohol challenge: heritability and covariation with personality, breath alcohol level, and drinking history. Alcohol Clin Exp Res 27:795–803

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, North Carolina

    Google Scholar 

  • Wilson JR, Erwin VG, McClearn GE, Plomin R, Johnson RC, Ahern FM, Cole RE (1984) Effects of ethanol: II. Behavioral sensitivity and acute behavioral tolerance. Alcohol Clin Exp Res 8:366–374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowldegements

This work was supported, in part, by USPHS grants AA 13177, AA 03527, AA 11464, AA 00095, and AA 07330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Radcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radcliffe, R.A., Bludeau, P., Asperi, W. et al. Confirmation of quantitative trait loci for ethanol sensitivity and neurotensin receptor density in crosses derived from the inbred High and Low Alcohol Sensitive selectively bred rat lines. Psychopharmacology 188, 343–354 (2006). https://doi.org/10.1007/s00213-006-0512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0512-2

Keywords

Navigation