Skip to main content

Advertisement

Log in

Time course of hypothalamic-pituitary-adrenocortical axis activity during treatment with reboxetine and mirtazapine in depressed patients

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In healthy subjects, cortisol and ACTH secretion are acutely stimulated by reboxetine and inhibited by mirtazapine. However, it was not investigated so far whether reboxetine and mirtazapine may also differ in their impact on hypothalamic-pituitary-adrenocortical (HPA) axis activity in depressed patients and whether these effects are related to clinical outcome.

Objectives

In the present study, we investigated the impact of 5-week treatment with reboxetine or mirtazapine on the combined dexamethasone suppression/corticotropin releasing hormone (DEX/CRH) test results in depressed patients.

Methods

Forty drug-free patients suffering from a major depressive episode (Diagnostic and Statistical Manual of Mental Disorders-IV criteria) were treated with either reboxetine (8 mg/day; n=20) or mirtazapine (45 mg/day; n=20) for 5 weeks. Before, after 1 and 5 weeks of therapy, the DEX/CRH test was performed and cortisol and ACTH concentrations were measured.

Results

During reboxetine treatment, a gradual and significant reduction in HPA axis activity as measured by the DEX/CRH test was seen, which was most pronounced after 5 weeks of treatment. In contrast, mirtazapine significantly reduced the cortisol and ACTH concentrations during the DEX/CRH test within 1 week. However, after 5 weeks of mirtazapine treatment, the cortisol and ACTH responses to the DEX/CRH test partially increased again both in responders and nonresponders.

Conclusions

This is the first study demonstrating differential effects of various antidepressants on the time course of serial DEX/CRH test results in depressed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry 42:1193–1204

    PubMed  CAS  Google Scholar 

  • Asnis GM, Halbreich U, Rabinovich H, Ryan ND, Sachar EJ, Nelson B, Puig-Antich J, Novacenko H (1985) The cortisol response to desipramine in endogenous depressives and normal controls: preliminary findings. Psychiatry Res 14:225–233

    Article  PubMed  CAS  Google Scholar 

  • Asnis GM, Sanderson WC, van Praag HM (1992) Cortisol response to intramuscular desipramine in patients with major depression and normal control subjects: a replication study. Psychiatry Res 44:237–250

    Article  PubMed  CAS  Google Scholar 

  • Barden N, Reul JM, Holsboer F (1995) Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends Neurosci 18:6–11

    Article  PubMed  CAS  Google Scholar 

  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991) Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 87:831–837

    Article  PubMed  CAS  Google Scholar 

  • Bschor T, Adli M, Baethge C, Eichmann U, Ising M, Uhr M, Modell S, Kunzel H, Muller-Oerlinghausen B, Bauer M (2002) Lithium augmentation increases the ACTH and cortisol response in the combined DEX/CRH test in unipolar major depression. Neuropsychopharmacology 27:470–478

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ (2002) Cortisol, serotonin and depression: all stressed out? Br J Psychiatry 180:99–100

    Article  PubMed  CAS  Google Scholar 

  • DeBattista C, Posener JA, Kalehzan BM, Schatzberg AF (2000) Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: a double-blind, placebo-controlled study. Am J Psychiatry 157:1334–1337

    Article  PubMed  CAS  Google Scholar 

  • De Boer T (1995) The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission. Int Clin Psychopharmacol 10(Suppl 4):19–23

    Article  PubMed  Google Scholar 

  • Deuschle M, Schmider J, Weber B, Standhardt H, Korner A, Lammers CH, Schweiger U, Hartmann A, Heuser I (1997) Pulse-dosing and conventional application of doxepin: effects on psychopathology and hypothalamus-pituitary-adrenal (HPA) system. J Clin Psychopharmacol 17:156–160

    Article  PubMed  CAS  Google Scholar 

  • Dinan TG, Lavelle E, Cooney J, Burnett F, Scott L, Dash A, Thakore J, Berti C (1997) Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 95:58–61

    Article  PubMed  CAS  Google Scholar 

  • Forsythe AI, Keenan TA, Organick EI, Stenberg W (1969) Computer science: a first course. Wiley, New York

    Google Scholar 

  • Frieboes RM, Sonntag A, Yassouridis A, Eap CB, Baumann P, Steiger A (2003) Clinical outcome after trimipramine in patients with delusional depression—a pilot study. Pharmacopsychiatry 36:12–17

    Article  PubMed  CAS  Google Scholar 

  • Haddjeri N, Blier P, de Montigny C (1998) Acute and long-term actions of the antidepressant drug mirtazapine on central 5-HT neurotransmission. J Affect Disord 51:255–266

    Article  PubMed  CAS  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  PubMed  CAS  Google Scholar 

  • Hatzinger M, Hemmeter UM, Baumann K, Brand S, Holsboer-Trachsler E (2002) The combined DEX–CRH test in treatment course and long-term outcome of major depression. J Psychiatr Res 36:287–297

    Article  PubMed  Google Scholar 

  • Heuser I, Yassouridis A, Holsboer F (1994) The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiat Res 28:341–356

    Article  PubMed  CAS  Google Scholar 

  • Heuser IJ, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153:93–99

    PubMed  CAS  Google Scholar 

  • Herr AS, Tsolakidou AF, Yassouridis A, Holsboer F, Rein T (2003) Antidepressants differentially influence the transcriptional activity of the glucocorticoid receptor in vitro. Neuroendocrinology 78:12–22

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F (2001) Stress, hypercortisolism and corticoid receptors in depression: implications for therapy. J Affect Disord 62:77–91

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F, Lauer CJ, Schreiber W, Krieg JC (1995) Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology 62:340–347

    Article  PubMed  CAS  Google Scholar 

  • Holsboer-Trachsler E, Stohler R, Hatzinger M (1991) Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res 38:163–171

    Article  PubMed  CAS  Google Scholar 

  • Holsboer-Trachsler E, Hemmeter U, Hatzinger M, Seifritz E, Gerhard U, Hobi V (1994) Sleep deprivation and bright light as potential augmenters of antidepressant drug treatment—neurobiological and psychometric assessment of course. J Psychiatr Res 28:381–399

    Article  PubMed  CAS  Google Scholar 

  • Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F (2005) The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatry 29:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Jensen JB, Mork A, Mikkelsen JD (2001) Chronic antidepressant treatments decrease pro-opiomelanocortin mRNA expression in the pituitary gland: effects of acute stress and 5-HT(1A) receptor activation. J Neuroendocrinol 13:887–893

    Article  PubMed  CAS  Google Scholar 

  • Kunzel HE, Binder EB, Nickel T, Ising M, Fuchs B, Majer M, Pfennig A, Ernst G, Kern N, Schmid DA, Uhr M, Holsboer F, Modell S (2003) Pharmacological and nonpharmacological factors influencing hypothalamic-pituitary-adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex–CRH test. Neuropsychopharmacology 28:2169–2178

    PubMed  CAS  Google Scholar 

  • Laakmann G (1988) Psychopharmaco-endocrinology and depression research. Monogr Gesamtgeb Psychiatr Psychiatry Ser 46:1–220

    PubMed  CAS  Google Scholar 

  • Laakmann G, Schüle C, Baghai T, Waldvogel E (1999) Effects of mirtazapine on growth hormone, prolactin, and cortisol secretion in healthy male subjects. Psychoneuroendocrinology 24:769–784

    Article  PubMed  CAS  Google Scholar 

  • Laakmann G, Hennig J, Baghai T, Schüle C (2003) Influence of mirtazapine on salivary cortisol in depressed patients. Neuropsychobiology 47:31–36

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Zanardi R, Popoli M, Garbini S, Brunello N, Smeraldi E, Racagni G, Perez J (1998) cAMP-dependent phosphorylation system after short- and long-term administration of moclobemide. J Psychiatr Res 32:111–115

    Article  PubMed  CAS  Google Scholar 

  • Muller MB, Keck ME, Binder EB, Kresse AE, Hagemeyer TP, Landgraf R, Holsboer F, Uhr M (2003) ABCB1 (MDR1)-type P-glycoproteins at the blood–brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28:1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Nickel T, Sonntag A, Schill J, Zobel AW, Ackl N, Brunnauer A, Murck H, Ising M, Yassouridis A, Steiger A, Zihl J, Holsboer F (2003) Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 23:155–168

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Papadopoulos AS, Poon L, Cleare AJ, Checkley SA, English J, Kerwin RW, Lightman S (2004a) Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacology (Berl) 177:200–206

    Article  CAS  Google Scholar 

  • Pariante CM, Thomas SA, Lovestone S, Makoff A, Kerwin RW (2004b) Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology 29:423–447

    Article  PubMed  CAS  Google Scholar 

  • Reul JM, Stec I, Soder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133:312–320

    Article  PubMed  CAS  Google Scholar 

  • Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F (1994) Hypothalamic-pituitary-adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology 60:509–519

    Article  PubMed  CAS  Google Scholar 

  • Schatzberg AF (2000) Clinical efficacy of reboxetine in major depression. J Clin Psychiatry 61(Suppl 10):S31–S38

    Google Scholar 

  • Schmid DA, Wichniak A, Uhr M, Ising M, Brunner H, Held K, Weikel JC, Sonntag A, Steiger A (2006) Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, prolactin, melatonin, ghrelin, and leptin, and the DEX–CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology 31(4):832–844

    Article  PubMed  CAS  Google Scholar 

  • Schüle C, Baghai T, Zwanzger P, Rupprecht R (2001) Attenuation of HPA axis hyperactivity and simultaneous clinical deterioration in a depressed patient treated with mirtazapine. World J Biol Psychiatry 2:103–105

    Article  PubMed  Google Scholar 

  • Schüle C, Baghai T, Goy J, Bidlingmaier M, Strasburger C, Laakmann G (2002) The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology (Berl) 163:95–101

    Article  CAS  Google Scholar 

  • Schüle C, Baghai T, Rackwitz C, Laakmann G (2003a) Influence of mirtazapine on urinary free cortisol excretion in depressed patients. Psychiatry Res 120:257–264

    Article  PubMed  CAS  Google Scholar 

  • Schüle C, Baghai T, Zwanzger P, Ella R, Eser D, Padberg F, Moller HJ, Rupprecht R (2003b) Attenuation of hypothalamic-pituitary-adrenocortical hyperactivity in depressed patients by mirtazapine. Psychopharmacology (Berl) 166:271–275

    Google Scholar 

  • Schüle C, Baghai T, Schmidbauer S, Bidlingmaier M, Strasburger CJ, Laakmann G (2004a) Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology 29:185–200

    Article  PubMed  CAS  Google Scholar 

  • Schüle C, Baghai T, Laakmann G (2004b) Mirtazapine decreases stimulatory effects of reboxetine on cortisol, adrenocorticotropin and prolactin secretion in healthy male subjects. Neuroendocrinology 79:54–62

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR, Fink G (1992) Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology 55:621–626

    Article  PubMed  CAS  Google Scholar 

  • Stout SC, Owens MJ, Nemeroff CB (2002) Regulation of corticotropin-releasing factor neuronal systems and hypothalamic-pituitary-adrenal axis activity by stress and chronic antidepressant treatment. J Pharmacol Exp Ther 300:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Strickland PL, Deakin JF, Percival C, Dixon J, Gater RA, Goldberg DP (2002) Bio-social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br J Psychiatry 180:168–173

    Article  PubMed  Google Scholar 

  • Uhr M, Grauer MT, Holsboer F (2003) Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry 54:840–846

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE (2003) Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 305:197–204

    Article  PubMed  CAS  Google Scholar 

  • Wittchen HU, Wunderlich U, Zaudig M, Fydrich T (1997) Strukturiertes Klinisches Interview für DSM-IV Achse I: Psychische Störungen (Structured clinical interview for DSM-IV, axis I). Hogrefe, Göttingen (German version)

  • Zivkov M, Roes KCB, Pols AG (1995) Efficacy of Org 3770 (mirtazapine) vs amitriptyline in patients with major depressive disorder, a meta-analysis. Hum Psychopharmacol 10(Suppl 2):135–145

    Article  Google Scholar 

  • Zobel AW, Yassouridis A, Frieboes RM, Holsboer F (1999) Prediction of medium-term outcome by cortisol response to the combined dexamethasone–CRH test in patients with remitted depression. Am J Psychiatry 156:949–951

    PubMed  CAS  Google Scholar 

  • Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. a prospective study. J Psychiatr Res 35:83–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was done in the framework of the doctoral theses of Ms. Martina Jordan and Ms. Renate Buechs, which were submitted to the Faculty of Medicine, University of Munich. The study was supported by an unrestricted grant given by the Organon pharmaceutical company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Schüle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüle, C., Baghai, T.C., Eser, D. et al. Time course of hypothalamic-pituitary-adrenocortical axis activity during treatment with reboxetine and mirtazapine in depressed patients. Psychopharmacology 186, 601–611 (2006). https://doi.org/10.1007/s00213-006-0382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0382-7

Keywords

Navigation