Skip to main content

Advertisement

Log in

Post-pubertal emergence of disrupted latent inhibition following prenatal immune activation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There is evidence pointing to an association between prenatal exposure to infection and increased liability to schizophrenia, and it has been suggested that the maternal immune response, in particular, the release of pro-inflammatory cytokines, may interfere with normal fetal brain development. Impaired capacity to ignore irrelevant stimuli is considered one of the central deficits in schizophrenia, and is manifested, among others, in disrupted latent inhibition (LI).

Objectives

To test the effects of prenatal immune activation on LI in juvenile and adult offspring.

Methods

Pregnant rats were injected with the synthetic cytokine releaser polyriboinosinic-polyribocytidilic acid (poly I:C, 4 mg/kg) on gestational day 15. LI was assessed in 35-day and 3-month-old offspring using a thirst motivated conditioned emotional response procedure.

Results

Consistent with the characteristic maturational delay of schizophrenia, prenatal immune activation did not affect LI in the juvenile offspring but led to a post-pubertal emergence of LI disruption. In addition, pronounced alterations in hippocampal morphology resembling those found in schizophrenia, were evident in the adult offspring.

Conclusions

These results support the hypothesis that immune activation during pregnancy may lead to long-term abnormalities mimicking those observed in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  Google Scholar 

  • Adams W, Kendell RE, Hare EH, Munk-Jorgensen P (1993) Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia. An analysis of Scottish, English, and Danish data. Br J Psychiatry 163:522–534

    CAS  PubMed  Google Scholar 

  • Baruch I, Hemsley D, Gray JA (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176:598–606

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York

  • Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  CAS  PubMed  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    CAS  PubMed  Google Scholar 

  • Doukas J, Cutler AH, Mordes JP (1994) Polyinosinic:polycytidylic acid is a potent activator of endothelial cells. Am J Pathol 145:137–147

    CAS  PubMed  Google Scholar 

  • Engel JA, Zhang J, Bergstrom T, Conradi N, Forkstam C, Liljeroth A, Svensson L (2000) Neonatal herpes simplex virus type 1 brain infection affects the development of sensorimotor gating in rats. Brain Res 863:233–240

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 4:145–154

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JH, Jarskog LF (1997) Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia [letter]. Schizophr Res 24:365–367

    Article  CAS  PubMed  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–84

    Google Scholar 

  • Gray NS, Hemsley DR, Gray JA (1992) Abolition of latent inhibition in acute, but not chronic schizophrenics. Neurol Psychiatr Brain Res 1:83–89

    Google Scholar 

  • Gray NS, Pilowsky LS, Gray JA, Kerwin RW (1995) Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophr Res 17:95–107

    CAS  PubMed  Google Scholar 

  • Grecksch G, Bernstein HG, Becker A, Hollt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20:525–532

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH (1997) Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 15:711–716

    Article  CAS  PubMed  Google Scholar 

  • Jones PB, Rantakallio P, Hartikainen AL, Isohanni M, Sipila P (1998) Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of the 1966 north Finland general population birth cohort. Am J Psychiatry 155:355–364

    CAS  PubMed  Google Scholar 

  • Kirch DG (1993) Infection and autoimmunity as etiologic factors in schizophrenia: a review and reappraisal. Schizophr Bull 19:355–370

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine- induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    CAS  PubMed  Google Scholar 

  • Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage—a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    CAS  PubMed  Google Scholar 

  • Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH (2001) Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 50:743–749

    Article  CAS  PubMed  Google Scholar 

  • McGue M, Gottesman, II (1991) The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatr Clin Neurosci 240:174–181

    CAS  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192

    CAS  PubMed  Google Scholar 

  • Mednick SA, Huttunen MO, Machon RA (1994) Prenatal influenza infections and adult schizophrenia. Schizophr Bull 20:263–267

    CAS  PubMed  Google Scholar 

  • Mehler MF, Kessler JA (1998) Cytokines in brain development and function. Adv Protein Chem 52:223–251

    CAS  PubMed  Google Scholar 

  • Merrill JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14:1–10

    CAS  PubMed  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    CAS  PubMed  Google Scholar 

  • Murray RM, Jones P, O'Callaghan E, Takei N, Sham P (1992) Genes, viruses and neurodevelopmental schizophrenia. J Psychiatr Res 26:225–235

    Article  CAS  PubMed  Google Scholar 

  • Nawa H, Takahashi M, Patterson PH (2000) Cytokine and growth factor involvement in schizophrenia—support for the developmental model. Mol Psychiatry 5:594–603

    Article  CAS  PubMed  Google Scholar 

  • O'Callaghan E, Sham P, Takei N, Glover G, Murray RM (1991) Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet 337:1248–1250

    CAS  PubMed  Google Scholar 

  • O'Callaghan E, Sham PC, Takei N, Murray G, Glover G, Hare EH, Murray RM (1994) The relationship of schizophrenic births to 16 infectious diseases. Br J Psychiatry 165:353–356

    CAS  PubMed  Google Scholar 

  • Onstad S, Skre I, Torgersen S, Kringlen E (1991) Twin concordance for DSM-III-R schizophrenia. Acta Psychiatr Scand 83:395–401

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

  • Pearce BD (2001) Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 6:634–646

    Article  CAS  PubMed  Google Scholar 

  • Pearce BD, Valadi NM, Po CL, Miller AH (2000) Viral infection of developing GABAergic neurons in a model of hippocampal disinhibition. Neuroreport 11:2433–2438

    CAS  PubMed  Google Scholar 

  • Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M, Thomas P (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51:149–161

    Article  CAS  PubMed  Google Scholar 

  • Rothschild DM, O'Grady M, Wecker L (1999) Neonatal cytomegalovirus exposure decreases prepulse inhibition in adult rats: implications for schizophrenia. J Neurosci Res 57:429–434

    Article  CAS  PubMed  Google Scholar 

  • Rubin SA, Sylves P, Vogel M, Pletnikov M, Moran TH, Schwartz GJ, Carbone KM (1999) Borna disease virus-induced hippocampal dentate gyrus damage is associated with spatial learning and memory deficits. Brain Res Bull 48:23–30

    Article  CAS  PubMed  Google Scholar 

  • Shalev U, Weiner I (2001) Gender-dependent differences in latent inhibition following prenatal stress and corticosterone administration. Behav Brain Res 126:57–63

    Article  CAS  PubMed  Google Scholar 

  • Snell JC, Chernyshev O, Gilbert DL, Colton CA (1997) Polyribonucleotides induce nitric oxide production by human monocyte- derived macrophages. J Leukoc Biol 62:369–373

    CAS  PubMed  Google Scholar 

  • Torrey EF, Rawlings R, Waldman IN (1988) Schizophrenic births and viral diseases in two states. Schizophr Res 1:73–77

    Article  CAS  PubMed  Google Scholar 

  • Tsuang M (2000) Schizophrenia: genes and environment. Biol Psychiatry 47:210–20

    CAS  PubMed  Google Scholar 

  • Tsuang MT, Stone WS, Faraone SV (2001) Genes, environment and schizophrenia. Br J Psychiatry 178: S18–S24

    PubMed  Google Scholar 

  • Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47:27–36

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1995) From neuropathology to neurodevelopment. Lancet 346:552–557

    CAS  PubMed  Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108:442–461

    Article  CAS  PubMed  Google Scholar 

  • Weiner I (2000) The latent inhibition model of schizophrenia. In: Myslobodsky MS, Weiner I (eds) Contemporary issues in modeling psychopathology. Kluwer, Dordrecht, pp 197–230

  • Weiner I (2001) Latent inhibition. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick PS, Wray E (eds) Current protocols in neuroscience. Wiley, New York

  • Weiner I (2003) The "two-headed" latent inhibition model of schizophrenia: modeling negative and positive symptoms and their treatment. Psychopharmacology DOI 10.1007/s00213-002-1313-x

  • Weiner I, Feldon J (1997) The switching model of latent inhibition: an update of neural substrates. Behav Brain Res 88:11–25

    CAS  PubMed  Google Scholar 

  • Weiner I, Feldon J, Ziv-Harris D (1987) Early handling and latent inhibition in the conditioned suppression paradigm. Dev Psychobiol 20:233–240

    Google Scholar 

  • Wright P, Gill M, Murray RM (1993) Schizophrenia: genetics and the maternal immune response to viral infection. Am J Med Genet 48:40–46

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Drs. Raya Eilam and Tamar Kadar in the histological assessment. This research was partly supported by Adams Super-Center for Brain Studies, Tel-Aviv University, and the Israel Foundation Trustees award to L.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Weiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerman, L., Weiner, I. Post-pubertal emergence of disrupted latent inhibition following prenatal immune activation. Psychopharmacology 169, 308–313 (2003). https://doi.org/10.1007/s00213-003-1461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1461-7

Keywords

Navigation