Skip to main content
Log in

Multilevel quasi-Monte Carlo for optimization under uncertainty

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper considers the problem of optimizing the average tracking error for an elliptic partial differential equation with an uncertain lognormal diffusion coefficient. In particular, the application of the multilevel quasi-Monte Carlo (MLQMC) method to the estimation of the gradient is investigated, with a circulant embedding method used to sample the stochastic field. A novel regularity analysis of the adjoint variable is essential for the MLQMC estimation of the gradient in combination with the samples generated using the circulant embedding method. A rigorous cost and error analysis shows that a randomly shifted quasi-Monte Carlo method leads to a faster rate of decay in the root mean square error of the gradient than the ordinary Monte Carlo method, while considering multiple levels substantially reduces the computational effort. Numerical experiments confirm the improved rate of convergence and show that the MLQMC method outperforms the multilevel Monte Carlo method and single level quasi-Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler, R.J.: The Geometry of Random Fields. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  2. Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  3. Borzì, A., von Winckel, G.: Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31, 2172–2192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borzì, A., von Winckel, G.: A POD framework to determine robust controls in PDE optimization. Comput. Vis. Sci. 14, 91–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, G., Wood, A.T.: Algorithm AS 312: An Algorithm for simulating stationary Gaussian random fields. Appl. Stat. 46, 171–181 (1997)

    MATH  Google Scholar 

  6. Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51, 322–352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Quarteroni, A.: Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncertain. Quantif. 2, 364–396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dick, J., Le Gia, Q.T., Schwab, C.: Higher order quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4, 48–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18, 1088–1107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Corporation, Mineola (2003)

    MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). (Reprint of the 1998 edition)

    Book  MATH  Google Scholar 

  14. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Analysis of circulant embedding methods for sampling stationary random fields. SIAM J. Numer. Anal. 56, 1871–1895 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Circulant embedding with QMC: analysis for elliptic PDEs with lognormal coefficients. Numer. Math. 140, 479–511 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9, 354–383 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harbrecht, H., Peters, M., Siebenmorgen, M.: Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient. SIAM/ASA J. Uncertain. Quantif. 4, 520–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herrmann, L., Schwab, C.: QMC algorithms with product weights for lognormal-parametric, elliptic PDEs. In: International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer, pp. 313–330 (2016)

  23. Karhunen, K.: Über lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. Ser. A. 1 Math.-Phys. 37, 1–79 (1947)

    MathSciNet  MATH  Google Scholar 

  24. Kouri, D.P.: A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients. SIAM/ASA J. Uncertain. Quantif. 2, 55–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kouri, D.P., Surowiec, T.M.: Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6, 787–815 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kunoth, A., Schwab, C.: Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs. SIAM J. Control. Optim. 51, 2442–2471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuo, F.Y.: Lattice rule generating vectors. https://web.maths.unsw.edu.au/~fkuo/lattice/index.html. Accessed 29 Sep 2021

  28. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math. 16, 1631–1696 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuo, F.Y., Scheichl, R., Schwab, C., Sloan, I.H., Ullmann, E.: Multilevel quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86, 2827–2860 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15, 411–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Waterhouse, B.J.: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complex. 26, 135–160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loève, M.: Fonctions aléatoires de second ordre. Rev. Sci., pp. 195–206 (1946)

  33. Martin, M., Krumscheid, S., Nobile, F.: Complexity analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters. ESAIM: Math. Model. Numer. Anal. 55, 1599–1633 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin, M., Nobile, F., Tsilifis, P.: A multilevel stochastic gradient method for PDE-constrained optimal control problems with uncertain parameters. arXiv:1912.11900 (2019)

  35. Nichols, J.A., Kuo, F.Y.: Fast CBC construction of randomly shifted lattice rules achieving \(o(n^{-1+\delta })\) convergence for unbounded integrands over \({\mathbb{R} }^s\) in weighted spaces with POD weights. J. Complex. 30, 444–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Barel, A., Vandewalle, S.: Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantif. 7, 174–202 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wood, A.T., Chan, G.: Simulation of stationary Gaussian processes in \([0,1]^d\). J. Comput. Graph. Stat. 3, 409–432 (1994)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

PG is grateful to the DFG RTG1953 “Statistical Modeling of Complex Systems and Processes” for funding of this research. AVB is funded by PhD fellowship 72661 by the research foundation Flanders (FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp A. Guth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guth, P.A., Van Barel, A. Multilevel quasi-Monte Carlo for optimization under uncertainty. Numer. Math. 154, 443–484 (2023). https://doi.org/10.1007/s00211-023-01364-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01364-w

Mathematics Subject Classification

Navigation