Skip to main content
Log in

Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method (FEM) for the time-dependent nonlinear thermistor equations in a two-dimensional nonconvex polygon. Due to the nonlinearity of the equations and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward, while most previous efforts for problems in nonconvex polygons mainly focused on linear models. Our theoretical analysis is based on an error splitting proposed in [30, 31] together with rigorous regularity analysis of the nonlinear thermistor equations and the corresponding iterated (time-discrete) elliptic system in a nonconvex polygon. With the proved regularity, we establish the stability in \(l^\infty (L^\infty )\) and the convergence in \(l^\infty (L^2)\) for the fully discrete finite element solution without any restriction on the time-step size. The approach used in this paper may also be applied to other nonlinear parabolic systems in nonconvex polygons. Numerical results confirm our theoretical analysis and show clearly that no time-step condition is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babuska, I., Kellogg, R.B., Pitkaranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allegretto, W., Xie, H.: Existence of solutions for the time dependent thermistor equation. IMA. J. Appl. Math. 48, 271–281 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allegretto, W., Yan, N.: A posteriori error analysis for FEM of thermistor problems. Int. J. Numer. Anal. Model. 3, 413–436 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Allegretto, W., Lin, Y., Ma, S.: Existence and long time behaviour of solutions to obstacle thermistor equations. Discret. Contin. Dyn. Syst. Ser. A 8, 757–780 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bacuta, C., Bramble, J.H., Xu, J.: Regularity estimates for elliptic boundary value problems in Besov spaces. Math. Comp. 72, 1577–1595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev World. IRMAR 07-14, Rennes, March 2007 (Preprint)

  8. Byun, S.S., Wang, L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225, 2648–2673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Kim, S.: A finite element method using singular functions for the Poisson equation: corner singularities. SIAM J. Numer. Anal. 39, 286–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z., Kim, S., Shin, B.C.: Solution methods for the Poisson equation with corner singularities: numerical results. SIAM J. Sci. Comput. 23, 672–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatzipantelidis, P., Lazarov, R.D., Thomée, V., Wahlbin, L.B.: Parabolic finite element equations in nonconvex polygonal domains. BIT Numer. Math. 46, S113–S143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chatzipantelidis, P., Lazarov, R.D., Thomée, V.: Parabolic finite volume element equations in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25, 507–525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chrysafinos, K., Hou, L.S.: Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J. Numer. Anal. 40, 282–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cimatti, G.: Existence of weak solutions for the nonstationary problem of the joule heating of a conductor. Ann. Mat. Pura Appl. 162, 33–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y.-Z., Wu, L.-C.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs, vol. 174. AMS, Providence (1998)

    Google Scholar 

  16. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, New York (1988)

    Book  MATH  Google Scholar 

  17. Elliott, C.M., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comput. 64, 1433–1453 (1995)

    Article  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

  19. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pending Action. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  21. Grisvard, P.: Singularities in Boundary Value Problems, Rech. Math. Appl., vol. 22, Masson, Paris (1992)

  22. Guo, B.Q., Schwab, C.: Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces. J. Comput. Appl. Math. 190, 487–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, B.Q., Babuska, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \(^3\). I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. Sect. A 127, 77–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kellogg, B.: Interpolation between subspaces of a Hilbert space. Institute for Fluid Dynamics and Applied Mathematics, College Park, Technical note (1971)

  26. Kweon, J.R.: The evolution compressible Navier–Stokes system on polygonal domains. J. Differ. Equ. 232, 487–520 (2007)

    Article  MATH  Google Scholar 

  27. Kweon, J.R.: Regularity of Solutions for the Navier–Stokes system of incompressible flows on a polygon. J. Differ. Equ. 235, 166–198 (2007)

    Article  MATH  Google Scholar 

  28. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Typez, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  29. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Yang, C.: Uniform BMO estimate of parabolic equations and global well-posedness of the thermistor problem. Forum Math. Sigma 3, e26 (2015). doi:10.1017/fms.2015.29

    Article  MATH  Google Scholar 

  33. Li, H.: Finite element analysis for the axisymmetric Laplace operator on polygonal domains. J. Comput. Appl. Math. 235, 5155–5176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS, Providence (1997)

    MATH  Google Scholar 

  36. Simader, C.G.: On Dirichlet Boundary Value Problem: Lp Theory Based on a Generalization of Garding’s Inequality, Lecture Notes in Math, vol. 268. Springer, Berlin (1972)

    Book  Google Scholar 

  37. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domainsz, Part 1. Math. Comput. 32, 73–109 (1978)

    MATH  Google Scholar 

  38. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berkub (1997)

    Book  MATH  Google Scholar 

  40. Wahlbin, L.B.: On the sharpness of certain local estimates for \(H^1\) projections into finite element spaces: influence of a re-entrant corner. Math. Comput. 42, 1–8 (1984)

    MathSciNet  MATH  Google Scholar 

  41. Wood, I.: Maximal \(L^p\)- regularity for the Laplacian on Lipschitz domains. Math. Z. 255, 855–875 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yue, X.Y.: Numerical analysis of nonstationary thermistor problem. J. Comput. Math. 12, 213–223 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Yuan, G.: Local existence of bounded solutions to the degenerate Stefan problem with Joule’s heating. J. Partial Differ. Equ. 9, 42–54 (1996)

    MATH  Google Scholar 

  44. Yuan, G.: Regularity of solutions of the thermistor problem. Appl. Anal. 53, 149–155 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yuan, G., Liu, Z.: Existence and uniqueness of the \(C^\alpha \) solution for the thermistor problem with mixed boundary value. SIAM J. Math. Anal. 25, 1157–1166 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, W.: Convergence analysis of finite element method for the nonstationary thermistor problem. Shandong Daxue Xuebao 29, 361–367 (1994)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, S., Westbrook, D.R.: Numerical solutions of the thermistor equations. J. Comput. Appl. Math. 79, 101–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of H. Gao was supported in part by NSFC 11501227. The work of B. Li was partially supported by the Start-up Fund (A/C Code: 1-ZE6L) of The Hong Kong Polytechnic University, and was partially carried during a research stay at Universität Tübingen, supported by the Alexander von Humboldt Foundation and NSFC 11301262. The research of W. Sun was supported in part by a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buyang Li.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

The following lemmas are consequences of [24] (which can be extended to Hölder continuous coefficients via a basic perturbation argument) and [41].

Lemma A.1

Let \(\Omega \) be a Lipschitz domain in \(\mathbb {R}^2\). Suppose that \(\sigma (u)\) is Hölder continuous and satisfies (1.5). Then there exists a positive constant \(p_1>4\) (depending on the domain \(\Omega \)) such that the solution v of the equation

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\nabla \cdot (\sigma (u)\nabla v)=\nabla \cdot \mathbf{b} &{} \quad \text{ in } \;\Omega ,\\ v=0 &{} \quad \text{ on } \;\partial \Omega , \end{array}\right. \end{aligned}$$

satisfies that

$$\begin{aligned} {\left\| v \right\| _{{W^{1,q}}}} \le {C_q}{\left\| \mathbf{{b}} \right\| _{{L^q}}} \quad for\;{p_{\mathrm{1}}}{\mathrm{/}}({p_{\mathrm{1}}}{\mathrm{- 1}}) \le q \le {p_{\mathrm{1}}}. \end{aligned}$$

Lemma A.2

Let \(\Omega \) be a Lipschitz domain in \(\mathbb {R}^2\). Then the solution of the inhomogeneous heat equation

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \frac{\partial u}{\partial t}-\varDelta u= \nabla \cdot f &{} \quad \mathrm{in } \; \Omega , \\ u=0 &{} \quad \mathrm{on } \; \partial \Omega , \\ u(x,0)=u_0(x) &{} \quad \mathrm{for } \; x\in \Omega , \end{array}\right. \end{aligned}$$

satisfies that

$$\begin{aligned} {\left\| u \right\| _{{L^2}((0,T);{W^{1,4}})}} \le C\sum \limits _{j = 1}^2 {{{\left\| {{f_j}} \right\| }_{{L^2}((0,T);{L^4})}}} + C{\left\| {{u_0}} \right\| _{{H^{1/2}}}}. \end{aligned}$$

From [7] we know that the regularity of g given in Lemma 1 implies that g can be extended to the interior of the domain \(\Omega \) with \(g\in L^\infty ((0,T);H^{1+\beta })\) and \(g_t\in L^\infty ((0,T);W^{1,4})\).

Based on Yuan and Liu’s results [44, 45], the solution of (1.2)–(1.4) satisfies that

$$\begin{aligned} \Vert u\Vert _{C^\alpha (\overline{\Omega })}\le C. \end{aligned}$$
(A.1)

By Lemma A.1, the Eq. (1.3) with the Hölder continuity of u implies that

$$\begin{aligned} \Vert \phi \Vert _{L^\infty ((0,T);W^{1,p_1})}\le C\Vert g\Vert _{L^\infty ((0,T);W^{1,p_1})}\le C, \quad \mathrm{for~some }\;p_1>4. \end{aligned}$$
(A.2)

Then (1.2) implies that

$$\begin{aligned} \Vert u_t\Vert _{L^2((0,T);L^2)} \le C\Vert \sigma (u)|\nabla \phi |^2\Vert _{L^2((0,T);L^2)}+C\Vert u_0\Vert _{H^1} \le C. \end{aligned}$$
(A.3)

Let \(w=u_t\). Differentiating (1.2)–(1.3) with respect to t, we obtain

$$\begin{aligned}&\partial _tw-\varDelta w=\nabla \cdot ( \sigma '(u)w\phi \nabla \phi ) +\nabla \cdot (\sigma (u)\phi _t\nabla \phi ) +\nabla \cdot (\sigma (u)\phi \nabla \phi _t), \end{aligned}$$
(A.4)
$$\begin{aligned}&-\nabla \cdot (\sigma (u)\nabla \phi _t)=\nabla \cdot (\sigma '(u)w\nabla \phi ). \end{aligned}$$
(A.5)

with the initial condition \(w(x,0)=w_0(x)\), where \(w_0=\varDelta u_0+\sigma (u_0)|\nabla \phi _0|^2\) and \(\phi _0\) is the solution of the elliptic PDE

$$\begin{aligned} \left\{ \begin{array}{ll} -\nabla \cdot (\sigma (u_0)\nabla \phi _0)=0, &{} \quad \mathrm{in } \; \Omega \\ \phi _0(x)=g_0 &{} \quad \mathrm{for } \; x\in \partial \Omega . \end{array}\right. \end{aligned}$$

It follows that \(w_0\in H^{1}_0\). Since \(w\in L^2((0,T); L^2)\) and \(\nabla \phi \in L^\infty ((0,T); L^4)\), applying Lemma A.1–(A.5) gives

$$\begin{aligned} \Vert \phi _t\Vert _{L^2((0,T);W^{1,4/3})}&\le C\Vert w\nabla \phi \Vert _{L^2((0,T);L^{4/3})} +C\Vert g_t\Vert _{L^2((0,T);W^{1,4/3})} \nonumber \\&\le C\Vert w\Vert _{L^2((0,T);L^2)}\Vert \nabla \phi \Vert _{L^2((0,T);L^4)} +C\Vert g_t\Vert _{L^2((0,T);W^{1,4/3})} \nonumber \\&\le C. \end{aligned}$$
(A.6)

and by the Sobolev embedding theorem, we obtain,

$$\begin{aligned} \Vert \phi _t\Vert _{L^2((0,T);L^4)}&\le C\Vert \phi _t\Vert _{L^2((0,T);W^{1,4/3})} \le C. \end{aligned}$$
(A.7)

Again applying Lemma A.2 to (A.4) shows

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);W^{1,4/3})}&\le C\Vert w \nabla \phi \Vert _{L^2((0,T);L^{4/3})} + C\Vert \phi _t\nabla \phi \Vert _{L^2((0,T);L^{4/3})} \nonumber \\&\quad +\;C\Vert \nabla \phi _t\Vert _{L^2((0,T);L^{4/3})} +\Vert w_0\Vert _{H^{1/2}} \nonumber \\&\le C \end{aligned}$$
(A.8)

and with the Sobolev embedding theorem, we have

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);L^4)} \le C\Vert w\Vert _{L^2((0,T);W^{1,4/3})} \le C. \end{aligned}$$
(A.9)

From (A.5) and (A.4), we see that

$$\begin{aligned} \Vert \phi _t\Vert _{L^2((0,T);H^1)}&\le C\Vert w\nabla \phi \Vert _{L^2((0,T);L^2)} +C\Vert g_t\Vert _{L^2((0,T);H^1)} \nonumber \\&\le C\Vert w\Vert _{L^2((0,T);L^4)} \Vert \nabla \phi \Vert _{L^\infty ((0,T);L^4)}+C\Vert g_t\Vert _{L^2((0,T);H^1)} \nonumber \\&\le C \end{aligned}$$
(A.10)

and

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);H^1)}&\le C\Vert w \nabla \phi \Vert _{L^2((0,T);L^2)} + C\Vert \phi _t\nabla \phi \Vert _{L^2((0,T);L^2)} \\&\quad +\; \Vert \nabla \phi _t\Vert _{L^2((0,T);L^2)}+\Vert w_0\Vert _{L^2}) \\&\le C. \end{aligned}$$

By the Sobolev embedding theorem, we have further

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);L^{p_3})}+\Vert \phi _t\Vert _{L^2((0,T);L^{p_3})} \le C(\Vert w\Vert _{L^2((0,T); H^1)}+\Vert \phi _t\Vert _{L^2((0,T); H^1)}) \le C, \end{aligned}$$
(A.11)

where \(p_3\) is determined by \(1/p_3+1/p_1=1/4\). Then

$$\begin{aligned} \Vert w\nabla \phi \Vert _{L^2((0,T);L^4)} \le C\Vert w\Vert _{L^2((0,T);L^{p_3})} \Vert \nabla \phi \Vert _{L^\infty ((0,T);L^{p_1})} \le C, \end{aligned}$$
(A.12)
$$\begin{aligned} \Vert \phi _t\nabla \phi \Vert _{L^2((0,T);L^4)} \le C\Vert \phi _t\Vert _{L^2((0,T);L^{p_3})} \Vert \nabla \phi \Vert _{L^\infty ((0,T);L^{p_1})}\le C. \end{aligned}$$
(A.13)

Moreover, by applying Lemma A.1 to the Eq. (A.5), we see that

$$\begin{aligned} \Vert \phi _t\Vert _{L^2((0,T);W^{1,4})} \le C\Vert w\nabla \phi \Vert _{L^2((0,T);L^4)} +C\Vert g_t\Vert _{L^2((0,T);W^{1,4})} \le C \end{aligned}$$
(A.14)

and by Lemma A.2, (A.4) implies that

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);W^{1,4})}&\le C \Vert w \nabla \phi \Vert _{L^2((0,T);L^4)} +C\Vert \phi _t\nabla \phi \Vert _{L^2((0,T);L^4)} \nonumber \\&\quad +\;C\Vert \nabla \phi _t\Vert _{L^2((0,T);L^4)}+C\Vert w_0\Vert _{H^{1/2}}) \nonumber \\&\le C. \end{aligned}$$
(A.15)

Using the Sobolev embedding theorem again, we arrive at

$$\begin{aligned} \Vert w\Vert _{L^2((0,T);L^\infty )}&\le C\Vert w\Vert _{L^2((0,T);W^{1,4})} \le C. \end{aligned}$$
(A.16)

Differentiating (1.2) with respect to t, we get

$$\begin{aligned} \partial _tw-\varDelta w=\sigma '(u)w|\nabla \phi |^2 +2\sigma (u)\nabla \phi \cdot \nabla \phi _t. \end{aligned}$$
(A.17)

and the above equation times \(\varDelta w\) gives

$$\begin{aligned}&\Vert w\Vert _{L^\infty ((0,T);H^1)} +\Vert \partial _tw\Vert _{L^2((0,T);L^2)} + \Vert \varDelta w\Vert _{L^2((0,T);L^2)} \\&\quad \le C(\Vert w|\nabla \phi |^2\Vert _{L^2((0,T);L^2)} +\Vert \nabla \phi \cdot \nabla \phi _t \Vert _{L^2((0,T);L^2)}+\Vert w_0\Vert _{H^1} ) \\&\quad \le C, \end{aligned}$$

which further shows that

$$\begin{aligned} \Vert w\Vert _{L^\infty ((0,T);L^{p_3})}+\Vert u_{tt}\Vert _{L^2((0,T);L^2)} + \Vert u_t\Vert _{L^2((0,T);H^{1+s})} \le C. \end{aligned}$$
(A.18)

It follows that

$$\begin{aligned} \Vert u\Vert _{C([0,T];H^{1+s})}\le C\Vert u\Vert _{L^2((0,T);H^{1+s})}+C\Vert u_t\Vert _{L^2((0,T);H^{1+s})} \le C. \end{aligned}$$
(A.19)

From (A.5) we see that

$$\begin{aligned} \Vert \phi _t\Vert _{L^\infty ((0,T);W^{1,4})}&\le C\Vert w\nabla \phi \Vert _{L^\infty ((0,T);L^4)} +C\Vert g_t\Vert _{L^\infty ((0,T);W^{1,4})} \nonumber \\&\le C. \end{aligned}$$
(A.20)

Furthermore, we rewrite (1.3) by

$$\begin{aligned} -\varDelta \phi =\frac{\sigma '(u)}{\sigma (u)} \nabla u\cdot \nabla \phi . \end{aligned}$$
(A.21)

With (), we obtain

$$\begin{aligned} \Vert \phi \Vert _{L^\infty ((0,T);H^{1+s})}&\le C \Vert \varDelta \phi \Vert _{L^\infty ((0,T);L^2)} +C\Vert g\Vert _{L^\infty ((0,T);H^2)} \nonumber \\&\le C\Vert \nabla u\cdot \nabla \phi \Vert _{L^\infty ((0,T);L^2)} +C\le C_2. \end{aligned}$$
(A.22)

Since \(H^{1+s_1}\hookrightarrow \hookrightarrow H^{1+s}\hookrightarrow W^{1,4}\), we have the following estimate (see Lemma 1.1, pp. 106 of [35])

$$\begin{aligned}&\Vert \phi (\cdot ,t_1)-\phi (\cdot ,t_2)\Vert _{H^{1+s}} \\&\quad \le \frac{1}{2}C_2^{-1}\epsilon \Vert \phi (\cdot ,t_1)-\phi (\cdot ,t_2)\Vert _{H^{1+s_1}} +C_\epsilon \Vert \phi (\cdot ,t_1)-\phi (\cdot ,t_2)\Vert _{W^{1,4}} \\&\quad \le \epsilon +C_\epsilon |t_1-t_2|\Vert \phi _t\Vert _{L^\infty ((0,T);W^{1,4})} \\&\quad \le \epsilon +C_\epsilon |t_1-t_2|, \quad \forall \; \epsilon >0, \end{aligned}$$

which implies that \(\phi \in C([0,T];H^{1+s})\).

The proof of Lemma 1 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Li, B. & Sun, W. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numer. Math. 136, 383–409 (2017). https://doi.org/10.1007/s00211-016-0843-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0843-9

Keywords

Mathematics Subject Classification

Navigation