Skip to main content
Log in

Interval bounds on the solutions of semi-explicit index-one DAEs. Part 1: analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributions are (1) an interval inclusion test for existence and uniqueness of a solution, and (2) sufficient conditions, in terms of differential inequalities, for two functions to describe componentwise upper and lower bounds on this solution, point-wise in the independent variable. The first proposed method applies these results sequentially in a two-phase algorithm analogous to validated integration methods for ordinary differential equations. The second method unifies these steps to characterize bounds as the solutions of an auxiliary system of DAEs. Efficient implementations of both are described using interval computations and demonstrated on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4, 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blajer, W.: Index of differential-algebraic equations governing the dynamics of contrained mechanical systems. Appl. Math. Modell. 16, 70–77 (1992)

    Article  MATH  Google Scholar 

  3. Chachuat, B., Singer, A.B., Barton, P.I.: Global mixed-integer dynamic optimization. AIChE J. 51(8), 2235–2253 (2005)

    Article  Google Scholar 

  4. Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science 1569, 76–90 (1999)

  5. Cross, E.A., Mitchell, I.M.: Level set methods for computing reachable sets of systems with differential algebraic equation dynamics. In: Proceedings of 2008 American Control Conference, pp. 2260–2265 (2008)

  6. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele L. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science 3414, 291–305 (2005)

  7. Harrison, G.W.: Dynamic models with uncertain parameters. In: Avula X. (ed.) Proceedings of the First International Conference on Mathematical Modeling, vol. 1, pp. 295–304 (1977)

  8. Hartman, P.: Ordinary differential equations, 2nd edn. SIAM, Philidelphia (2002)

    Book  MATH  Google Scholar 

  9. Hoefkens, J., Berz, M., Makino, K.: Computing validated solutions of implicit differential equations. Adv. Comput. Math. 19, 231–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, H., Adjiman, C.S., Shah, N.: Quantitative framework for reliable safety analysis. AIChE J. 48(1), 78–96 (2002)

    Article  Google Scholar 

  11. Jaulin, L.: Nonlinear bounded-error state estimation of continuous-time systems. Automatica 38, 1079–1082 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, Zurich (2006)

  13. Lin, Y., Stadtherr, M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45, 8438–8448 (2006)

    Google Scholar 

  14. Lin, Y., Stadtherr, M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007)

    Article  Google Scholar 

  15. Lin, Y., Stadtherr, M.A.: Fault detection in nonlinear continuous-time systems with uncertain parameters. AIChE J. 54(9), 2335–2345 (2008)

    Article  Google Scholar 

  16. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35, 349–370 (1999)

    Google Scholar 

  17. Mattsson, S.E.: On modeling and differential algebraic systems. Simulation 52(1), 24–32 (1989)

    Article  MATH  Google Scholar 

  18. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  20. Munkres, J.R.: Analysis on Manifolds. Westview Press, Cambridge (1991)

    MATH  Google Scholar 

  21. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Oishi, M., Mitchell, I., Tomlin, C., Saint-Pierre, P.: Computing viable sets and reachable sets to design feedback linearizing control laws under saturation. In: Proceedings of 45th IEEE Conference on Decision and Control, San Diego, pp. 3801–3807 (2006)

  24. Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24(1), 1–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Raissi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40, 1771–1777 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing an over-approximation for the reachable set of uncertain nonlinear systems. IEEE Trans. Automat. Contr. 54(10), 2352–2364 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rapaport, A., Dochain, D.: Interval observers for biochemical processes with uncertain kinetics and inputs. Math. Biosci. 193, 235–253 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rauh, A., Brill, M., Gunther, C.: A novel interval arithmetic approach for solving differential-algebraic equations with Valencia-IVP. Int. J. Appl. Math. Comput. Sci. 19(3), 381–397 (2009)

    Google Scholar 

  29. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  30. Scott, J.K., Barton, P.I.: Tight, efficient bounds on the solutions of chemical kinetics models. Comput Chem Eng 34, 717–731 (2010)

    Article  Google Scholar 

  31. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49, 93–100 (2013)

    Google Scholar 

  32. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51, 569–606 (2011). doi:10.1007/s10898-011-9664-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Singer, A.B., Barton, P.I.: Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput. 27, 2167–2182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Singer, A.B., Barton, P.I.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110(3), 971–976 (2006)

    Article  Google Scholar 

  35. Singer, A.B., Barton, P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34, 159–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Strang, G.: Linear Algebra and its Applications, 4th edn. Thomson Brooks/Cole, Belmont (2006)

    Google Scholar 

  37. Szarski, J.: Differential Inequalities. Polish Scientific Publishers, Warszawa (1965)

    MATH  Google Scholar 

  38. Tomlin, C., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. In: Proceedings of the IEEE, vol. 91(7), 986–1001 (2003)

  39. Varberg, D.E.: On absolutely continuous functions. Am. Math. Mon. 72, 831–941 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  40. Walter, W.: Differential and Integral Inequalities. Springer, New York (1970)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This paper is based on work funded by the National Science Foundation under grant CBET-0933095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Appendix A: Uniqueness proofs

Appendix A: Uniqueness proofs

Lemma 7.1

Let \(E\subset \mathbb R ^n\) be connected and let \(\psi :E\rightarrow \mathbb R \) be continuous. If the set \(\{\varvec{\xi }\in E: \psi (\varvec{\xi }) =0\}\) is nonempty and open with respect to \(E\), then \(\psi (\varvec{\xi })=0, \forall \varvec{\xi }\in E\).

Proof

Let \(E_1=\{\varvec{\xi }\in E: \psi (\varvec{\xi }) =0\}\) and \(E_2=\{\varvec{\xi }\in E: \psi (\varvec{\xi }) \ne 0\}\), and note that \(E_1\cap E_2=\emptyset \) and \(E_1\cup E_2=E\). Since \(E\) is connected, it cannot be written as the disjoint union of two nonempty open (w.r.t. \(E\)) sets. But \(E_1\) is nonempty and open w.r.t. \(E\) by hypothesis, and \(E_2\) is open w.r.t. \(E\) because it is the inverse image of an open set under a continuous mapping on \(E\). Hence, \(E_2=\emptyset \) and \(E_1=E\). \(\square \)

Lemma 7.2

Let \((\mathbf{x},\mathbf{y})\in C^1(I\times P,D_x)\times C^1(I\times P,D_y)\) and \((\mathbf{x}^*,\mathbf{y}^*)\in C^1(\widetilde{I}\times \widetilde{P},D_x)\times C^1(\widetilde{I}\times \widetilde{P},D_y)\) be solutions of (1a) on \(I\times P\) and \(\widetilde{I}\times \widetilde{P}\), respectively, and suppose that \((\mathbf{x},\mathbf{y})\) is regular. Then

  1. 1.

    For any \((t^{\prime },\mathbf{p}^{\prime })\in I\times P\), there exists an open ball around \((t^{\prime },\mathbf{p}^{\prime }), U^{\prime }\subset D_t\times D_p\), an open ball around \((t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime })), V^{\prime }\subset D_t\times D_p\times D_x\), an open ball around \(\mathbf{y}(t^{\prime },\mathbf{p}^{\prime }), Q^{\prime }\subset D_{y}\), and a function \(\mathbf{h}\in C^1(V^{\prime },Q^{\prime })\) satisfying \((t,\mathbf{p},\mathbf{x}(t,\mathbf{p}))\in V^{\prime }\) and \(\mathbf{y}(t,\mathbf{p}) = \mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}))\in Q^{\prime }, \forall (t,\mathbf{p})\in U^{\prime }\cap (I\times P)\).

  2. 2.

    If \(\hat{P}\subset P\cap \widetilde{P}\) is connected and \(\exists (t^{\prime },\hat{\mathbf{p}}) \in (I\cap \widetilde{I})\times \hat{P}\) such that \(\mathbf{x}(t^{\prime },\mathbf{p})\) \(=\mathbf{x}^*(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\), and \(\mathbf{y}(t^{\prime },\hat{\mathbf{p}})=\mathbf{y}^*(t^{\prime },\hat{\mathbf{p}})\), then \(\mathbf{y}(t^{\prime },\mathbf{p})=\mathbf{y}^*(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\).

Proof

Choose any \((t^{\prime },\mathbf{p}^{\prime })\in I\times P\). Since \((\mathbf{x},\mathbf{y})\) is a regular solution of (1a) on \(I\times P, (t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime }),\mathbf{y}(t^{\prime },\mathbf{p}^{\prime }))\in \mathcal G \cap \mathcal G _R\). Then, by Theorem 2.2, there exists an open ball around \((t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime })), V^{\prime }\subset D_t\times D_p\times D_x\), an open ball around \(\mathbf{y}(t^{\prime },\mathbf{p}^{\prime }), Q^{\prime }\subset D_{y}\), and a function \(\mathbf{h}\in C^1(V^{\prime },Q^{\prime })\) such that \(\mathbf{h}(t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime }))\) \(=\mathbf{y}(t^{\prime },\mathbf{p}^{\prime })\) and, for each \((t,\mathbf{p},\mathbf{z}_x)\in V^{\prime }, \mathbf{h}(t,\mathbf{p},\mathbf{z}_x)\) is the unique element of \(Q^{\prime }\) satisfying \(\mathbf{g}(t,\mathbf{p},\mathbf{z}_x,\mathbf{h}(t,\mathbf{p},\mathbf{z}_x))=\mathbf{0}\). Now, by continuity, there exists an open ball \(U^{\prime }\) around the point \((t^{\prime },\mathbf{p}^{\prime })\) small enough that \((t,\mathbf{p},\mathbf{x}(t,\mathbf{p}))\in V^{\prime }\) for every \((t,\mathbf{p})\in U^{\prime }\cap (I\times P)\), and it follows that

$$\begin{aligned} \mathbf{g}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}),\mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p})))=\mathbf{0}, \quad \forall (t,\mathbf{p})\in U^{\prime }\cap (I\times P). \end{aligned}$$
(48)

Again by continuity, it is possible to choose \(U^{\prime }\) small enough that \(\mathbf{y}(t,\mathbf{p})\in Q^{\prime }\) for all \((t,\mathbf{p})\in U^{\prime }\cap (I\times P)\), which implies, by the uniqueness property of \(\mathbf{h}\) in \(Q^{\prime }\), that

$$\begin{aligned} \mathbf{y}(t,\mathbf{p})=\mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p})), \quad \forall (t,\mathbf{p})\in U^{\prime }\cap (I\times P). \end{aligned}$$
(49)

This establishes the first conclusion of the lemma.

To prove the second conclusion, choose any \(\hat{P}, \hat{\mathbf{p}}\) and \(t^{\prime }\) as in the hypothesis of the lemma and define

$$\begin{aligned} R\equiv \{\mathbf{p}\in \hat{P}: \Vert \mathbf{y}(t^{\prime },\mathbf{p})-\mathbf{y}^*(t^{\prime },\mathbf{p})\Vert =0\}. \end{aligned}$$
(50)

By hypothesis, \(\hat{\mathbf{p}}\in R\) so that \(R\) is nonempty. It will be shown than \(R\) is open with respect to \(\hat{P}\). Choose any \(\mathbf{p}^{\prime }\in R\) and, corresponding to the point \((t^{\prime },\mathbf{p}^{\prime })\), let \(U^{\prime }, V^{\prime }, Q^{\prime }\) and \(\mathbf{h}\) be as in the first conclusion of the lemma. By hypothesis, \((t^{\prime },\mathbf{p}^{\prime },\mathbf{x}^*(t^{\prime },\mathbf{p}^{\prime }))=(t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime }))\in V^{\prime }\), and by the definition of \(R, \mathbf{y}^*(t^{\prime },\mathbf{p}^{\prime })=\mathbf{y}(t^{\prime },\mathbf{p}^{\prime })\in Q^{\prime }\), so continuity implies that we may choose an open all around \(\mathbf{p}^{\prime }, J_{\mathbf{p}^{\prime }}\), small enough that \(J_{\mathbf{p}^{\prime }}\times \{t^{\prime }\}\subset U^{\prime }\), and \((t^{\prime },\mathbf{p},\mathbf{x}^*(t^{\prime },\mathbf{p}))\in V^{\prime }\) and \(\mathbf{y}^*(t^{\prime },\mathbf{p})\in Q^{\prime }\), for all \(\mathbf{p}\in J_{\mathbf{p}^{\prime }}\cap \widetilde{P}\). Then the first conclusion of the theorem gives

$$\begin{aligned} \mathbf{y}(t^{\prime },\mathbf{p})=\mathbf{h}(t^{\prime },\mathbf{p},\mathbf{x}(t^{\prime },\mathbf{p})), \quad \forall \mathbf{p}\in J_{\mathbf{p}^{\prime }}\cap \hat{P}, \end{aligned}$$
(51)

and an identical argument shows that

$$\begin{aligned} \mathbf{y}^*(t^{\prime },\mathbf{p}) =\mathbf{h}(t^{\prime },\mathbf{p},\mathbf{x}^*(t^{\prime },\mathbf{p})), \quad \forall \mathbf{p}\in J_{\mathbf{p}^{\prime }}\cap \hat{P}. \end{aligned}$$
(52)

But \(\mathbf{x}^*(t^{\prime },\mathbf{p})=\mathbf{x}(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\) by hypothesis, so this implies that \(\mathbf{y}^*(t^{\prime },\mathbf{p})\) \(=\mathbf{y}(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in J_{\mathbf{p}^{\prime }}\cap \hat{P}\). Thus \(R\) is open with respect to \(\hat{P}\). Now, since \(\hat{P}\) is connected by hypothesis and \(R\) is nonempty and open with respect to \(\hat{P}\), Lemma 7.1 shows that \(R=\hat{P}\); i.e. \(\mathbf{y}^*(t^{\prime },\mathbf{p})=\mathbf{y}(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\). \(\square \)

Lemma 7.3

Let \((\mathbf{x},\mathbf{y})\in C^1(I\times P,D_x)\times C^1(I\times P,D_y)\) and \((\mathbf{x}^*,\mathbf{y}^*)\in C^1(\widetilde{I}\times \widetilde{P},D_x)\times C^1(\widetilde{I}\times \widetilde{P},D_y)\) be solutions of (1a) on \(I\times P\) and \(\widetilde{I}\times \widetilde{P}\), respectively, and suppose that \((\mathbf{x},\mathbf{y})\) is regular. If \(\hat{P}\subset P\cap \widetilde{P}\) is connected and compact and \(\exists (\hat{t},\hat{\mathbf{p}}) \in (I\cap \widetilde{I})\times \hat{P}\) such that \(\mathbf{x}(\hat{t},\mathbf{p})=\mathbf{x}^*(\hat{t},\mathbf{p}), \forall \mathbf{p}\in \hat{P}\), and \(\mathbf{y}(\hat{t},\hat{\mathbf{p}})=\mathbf{y}^*(\hat{t},\hat{\mathbf{p}})\), then \(\mathbf{x}(t,\mathbf{p}) = \mathbf{x}^*(t,\mathbf{p})\) and \(\mathbf{y}(t,\mathbf{p}) = \mathbf{y}^*(t,\mathbf{p}), \forall (t,\mathbf{p})\in (I\cap \widetilde{I})\times \hat{P}\).

Proof

Choose any \(\hat{P}, \hat{\mathbf{p}}\) and \(\hat{t}\) as in the hypothesis of the lemma and define

$$\begin{aligned} R\equiv \{t\in I\cap \widetilde{I}: \max _{\mathbf{p}\in \hat{P}}\left(\Vert \mathbf{x}(t,\mathbf{p})-\mathbf{x}^*(t,\mathbf{p})\Vert \right)+\Vert \mathbf{y}(t,\hat{\mathbf{p}})-\mathbf{y}^*(t,\hat{\mathbf{p}})\Vert =0\}. \end{aligned}$$
(53)

\(R\) is nonempty since it contains \(\hat{t}\). It will be shown that \(R\) is open with respect to \(I\cap \widetilde{I}\). Choose any \(t^{\prime }\in R\). Applying the second conclusion of Lemma 7.2, we have \(\mathbf{y}^*(t^{\prime },\mathbf{p})=\mathbf{y}(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\). Choose any \(\mathbf{p}^{\prime }\in \hat{P}\) and, corresponding to the point \((t^{\prime },\mathbf{p}^{\prime })\), let \(U^{\prime }, V^{\prime }, Q^{\prime }\) and \(\mathbf{h}\) be as in the first conclusion of Lemma 7.2. By the definition of \(R, (t^{\prime },\mathbf{p}^{\prime },\mathbf{x}^*(t^{\prime },\mathbf{p}^{\prime }))=(t^{\prime },\mathbf{p}^{\prime },\mathbf{x}(t^{\prime },\mathbf{p}^{\prime }))\in V^{\prime }\) and, by the argument above, \(\mathbf{y}^*(t^{\prime },\mathbf{p}^{\prime })=\mathbf{y}(t^{\prime },\mathbf{p}^{\prime })\in Q^{\prime }\). Then continuity implies that there exists an open ball around \(t^{\prime }, J_{t^{\prime }}\), and an open ball around \(\mathbf{p}^{\prime }, J_{\mathbf{p}^{\prime }}\), such that \(J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }}\subset U^{\prime }\), and \((t,\mathbf{p},\mathbf{x}^*(t,\mathbf{p}))\in V^{\prime }\) and \(\mathbf{y}^*(t,\mathbf{p})\in Q^{\prime }\), for all \((t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap (\widetilde{I}\times \widetilde{P})\). From Lemma 7.2, we have

$$\begin{aligned} \mathbf{y}(t,\mathbf{p})&=\mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p})), \quad \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap (I\times \hat{P}), \end{aligned}$$
(54)

and an identical argument using the uniqueness property of \(\mathbf{h}\) in \(Q^{\prime }\) shows that

$$\begin{aligned} \mathbf{y}^*(t,\mathbf{p})=\mathbf{h}(t,\mathbf{p},\mathbf{x}^*(t,\mathbf{p})), \quad \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap (\widetilde{I}\times \hat{P}). \end{aligned}$$
(55)

Then, by definition,

$$\begin{aligned} \dot{\mathbf{x}}(t,\mathbf{p})&= \mathbf{f}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}),\mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}))), \quad \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap (I\times \hat{P}), \end{aligned}$$
(56)
$$\begin{aligned} \dot{\mathbf{x}}^*(t,\mathbf{p})&\!= \mathbf{f}(t,\mathbf{p},\mathbf{x}^*(t,\mathbf{p}),\mathbf{h}(t,\mathbf{p},\mathbf{x}^*(t,\mathbf{p}))), \quad \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap (\widetilde{I}\!\times \! \hat{P}).\nonumber \\ \end{aligned}$$
(57)

But \(\mathbf{f}\) and \(\mathbf{h}\) are continuously differentiable and hence the mapping \((t,\mathbf{p},\mathbf{z}_x)\mapsto \mathbf{f}(t,\mathbf{p},\mathbf{h}(t,\mathbf{p},\mathbf{z}_x))\) is Lipschitz on \(V^{\prime }\) by Lemma 2.1. The definition of \(R\) gives \(\mathbf{x}(t^{\prime },\mathbf{p})=\mathbf{x}^*(t^{\prime },\mathbf{p}), \forall \mathbf{p}\in \hat{P}\), so a standard application of Gronwall’s inequality shows that \(\mathbf{x}(t,\mathbf{p})=\mathbf{x}^*(t,\mathbf{p}), \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap ((I\cap \widetilde{I})\times \hat{P})\). Furthermore, this implies that \(\mathbf{y}(t,\mathbf{p})=\mathbf{h}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}))=\mathbf{h}(t,\mathbf{p},\mathbf{x}^*(t,\mathbf{p}))=\mathbf{y}^*(t,\mathbf{p}), \forall (t,\mathbf{p})\in (J_{t^{\prime }}\times J_{\mathbf{p}^{\prime }})\cap ((I\cap \widetilde{I})\times \hat{P})\).

Now, since \(\mathbf{p}^{\prime }\in \hat{P}\) was chosen arbitrarily, the preceding construction applies to every \(\mathbf{p}\in \hat{P}\). Thus, to every \(\mathbf{q}\in \hat{P}\), there corresponds an open ball around \(t^{\prime }, J_{t^{\prime }}(\mathbf{q})\), and an open ball around \(\mathbf{q}, J_{\mathbf{q}}\), such that \((\mathbf{x},\mathbf{y})(t,\mathbf{p})=(\mathbf{x}^*,\mathbf{y}^*)(t,\mathbf{p}), \forall (t,\mathbf{p})\in (J_{t^{\prime }}(\mathbf{q})\times J_{\mathbf{q}})\cap ((I\cap \widetilde{I})\times \hat{P})\). Noting that the \(J_{\mathbf{q}}\) constructed in this way form an open cover of \(\hat{P}\), compactness of \(\hat{P}\) implies that there exist finitely many elements of \(\hat{P}, \mathbf{q}_1,\ldots ,\mathbf{q}_n\), such that \(\hat{P}\) is covered by \(J_{\mathbf{q}_1}\cup \ldots \cup J_{\mathbf{q}_n}\). Let \(J_{t^{\prime }}^*\equiv J_{t^{\prime }}(\mathbf{q}_1)\cap \ldots \cap J_{t^{\prime }}(\mathbf{q}_n)\). Then, for every \(\mathbf{p}\in \hat{P}\), there exists \(i\in \{1,\ldots ,n\}\) such that \(\mathbf{p}\in J_{\mathbf{q}_i}\), which implies that \((\mathbf{x},\mathbf{y})(t,\mathbf{p})=(\mathbf{x}^*,\mathbf{y}^*)(t,\mathbf{p}), \forall t\in J_{t^{\prime }}^*\cap (I\cap \widetilde{I})\). Therefore, \(J^*_{t^{\prime }}\cap (I\cap \widetilde{I})\) is contained in \(R\), so that \(t^{\prime }\) is an interior point of \(R\) when viewed as a subset of \(I\cap \widetilde{I}\), and since \(t^{\prime }\in R\) was chosen arbitrarily, \(R\) is open with respect to \(I\cap \widetilde{I}\). Since \(I\cap \widetilde{I}\) is connected and \(R\) is nonempty and open with respect to \(I\cap \widetilde{I}\), Lemma 7.1 shows that \(R=I\cap \widetilde{I}\). But by definition, this implies that \(\mathbf{x}(t,\mathbf{p})=\mathbf{x}^*(t,\mathbf{p})\) and \(\mathbf{y}(t,\hat{\mathbf{p}})=\mathbf{y}^*(t,\hat{\mathbf{p}}), \forall (t,\mathbf{p})\in (I\cap \widetilde{I})\times \hat{P}\). Finally, the second conclusion of Lemma 7.2 implies that \(\mathbf{y}(t,\mathbf{p})=\mathbf{y}^*(t,\mathbf{p}), \forall (t,\mathbf{p})\in (I\cap \widetilde{I})\times \hat{P}\). \(\square \)

Theorem 7.1

Let \((\mathbf{x},\mathbf{y})\in C^1(I\times P,D_x)\times C^1(I\times P,D_y)\) and \((\mathbf{x}^*,\mathbf{y}^*)\in C^1(\widetilde{I}\times \widetilde{P},D_x)\times C^1(\widetilde{I}\times \widetilde{P},D_y)\) be solutions of (1a) on \(I\times P\) and \(\widetilde{I}\times \widetilde{P}\), respectively, and suppose that \((\mathbf{x},\mathbf{y})\) is regular. If \(\hat{P}\subset P\cap \widetilde{P}\) is connected and \(\exists (\hat{t},\hat{\mathbf{p}}) \in (I\cap \widetilde{I})\times \hat{P}\) such that \(\mathbf{x}(\hat{t},\mathbf{p})=\mathbf{x}^*(\hat{t},\mathbf{p}), \forall \mathbf{p}\in \hat{P}\), and \(\mathbf{y}(\hat{t},\hat{\mathbf{p}})=\mathbf{y}^*(\hat{t},\hat{\mathbf{p}})\), then \(\mathbf{x}(t,\mathbf{p}) = \mathbf{x}^*(t,\mathbf{p})\) and \(\mathbf{y}(t,\mathbf{p}) = \mathbf{y}^*(t,\mathbf{p}), \forall (t,\mathbf{p})\in (I\cap \widetilde{I})\times \hat{P}\).

Proof

Choose any \(\mathbf{p}\in \hat{P}\). Clearly, \(\{\mathbf{p}\}\subset P\cap \widetilde{P}\) is compact and connected, and Lemma 7.2 guarantees that \(\mathbf{y}(\hat{t},\mathbf{p})=\mathbf{y}^*(\hat{t},\mathbf{p})\). Then Lemma 7.3 shows that \(\mathbf{x}(t,\mathbf{p})=\mathbf{x}^*(t,\mathbf{p})\) and \(\mathbf{y}(t,\mathbf{p})=\mathbf{y}^*(t,\mathbf{p}), \forall t\in I\cap \widetilde{I}\). \(\square \)

Corollary 3.1 is a simple consequence of these developments. By the definition of a solution of (1), we have \(\mathbf{x}(t_0,\mathbf{p})=\mathbf{x}^*(t_0,\mathbf{p}), \forall \mathbf{p}\in \hat{P}\), and \(\mathbf{y}(t_0,\hat{\mathbf{p}})=\mathbf{y}^*(t_0,\hat{\mathbf{p}})\) by hypothesis. Since \(\hat{P}\) is connected, the result follows from Theorem 7.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J.K., Barton, P.I. Interval bounds on the solutions of semi-explicit index-one DAEs. Part 1: analysis. Numer. Math. 125, 1–25 (2013). https://doi.org/10.1007/s00211-013-0531-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0531-y

Mathematics Subject Classification (2000)

Navigation