Skip to main content
Log in

Optimal multilevel methods for graded bisection grids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We design and analyze optimal additive and multiplicative multilevel methods for solving H 1 problems on graded grids obtained by bisection. We deal with economical local smoothers: after a global smoothing in the finest mesh, local smoothing for each added node during the refinement needs to be performed only for three vertices - the new vertex and its two parent vertices. We show that our methods lead to optimal complexity for any dimensions and polynomial degree. The theory hinges on a new decomposition of bisection grids in any dimension, which is of independent interest and yields a corresponding decomposition of spaces. We use the latter to bridge the gap between graded and quasi-uniform grids, for which the multilevel theory is well-established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aksoylu B., Bond S., Holst M.: An odyssey into local refinement and multilevel preconditioning III: implementation and numerical experiments. SIAM J. Sci. Comput. 25(2), 478–498 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aksoylu B., Holst M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold D.N., Mukherjee A., Pouly L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bai D., Brandt A.: Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8, 109–134 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bank, R.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations Users’ Guide 6.0. Society for Industrial and Applied Mathematics (1990)

  6. Bank R.E., Dupont T., Yserentant H.: The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement. In: Scientific Computing, pp. 3–17. IMACS/North-Holland Publishing Company, Amsterdam (1983)

  8. Bänsch E.: Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3, 181–191 (1991)

    Article  MATH  Google Scholar 

  9. Biedl, T.C., Bose, P, Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s matching theorem. In: Symposium on Discrete Algorithms, pp. 130–139 (1999)

  10. Binev P., Dahmen W., DeVore R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bornemann F., Erdmann B., Kornhuber R.: Adaptive multilevel methods in three space dimensions. Int. J. Numer. Meth. Eng. 36(18), 3187–3203 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bornemann F. A.: An adaptive multilevel approach to parabolic equations. III. 2D error estimation and multilevel preconditioning. Impact Comput. Sci. Eng. 4(1), 1–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bornemann F.A., Yserentant H.: A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64, 455–476 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bramble J.H., Pasciak J.E.: New estimates for multigrid algorithms including the V-cycle. Math. Comput. 60, 447–471 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Bramble J.H., Pasciak J.E., Xu J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bramble, J.H., Zhang, X.: The analysis of multigrid methods. In: Handbook of Numerical Analysis, vol. VII, pp. 173–415. North-Holland, Amsterdam (2000)

  17. Brandt A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cascón J.M., Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, L.: iFEM: an integrate finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)

  20. Chen, L.: Deriving the X-Z identity from auxiliary space method. In: The Proceedings for 19th Conferences for Domain Decomposition Methods (2010)

  21. Chen, L., Holst, M., Xu, J., Zhu, Y.: Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids (2010, submitted)

  22. Chen L., Zhang C.-S.: A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math. 28(6), 767–789 (2010)

    MathSciNet  Google Scholar 

  23. Cho D., Xu J., Zikatanov L.: New estimates for the rate of convergence of the method of subspace corrections. Numer. Math. Theor. Meth. Appl. 1, 44–56 (2008)

    MATH  MathSciNet  Google Scholar 

  24. Dahmen W., Kunoth A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Devore R.A., Lorentz G.G.: Constructive Approximation. Spring, New York (1993)

    MATH  Google Scholar 

  26. Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2), 151–179 (1998). Also as Proceedings Large-Scale Scientific Computations of Engineering and Environmental Problems, 7 June–11 June, 1997, Varna, Bulgaria, Notes on Numerical Fluid Mechanics 62, Vieweg-Verlag, Braunschweig, M. Griebel, O. Iliev, S. Margenov and P. Vassilevski (eds.)

    Google Scholar 

  28. Griebel M., Oswald P.: On additive Schwarz preconditioners for sparse grid discretization. Numer. Math. 66, 449–464 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Griebel M., Oswald P.: On the abstract theory of additive and multiplicative Schwarz methods. Numer. Math. 70, 163–180 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Griebel M., Zumbusch G.: Parallel adaptive subspace correction schemes with applications to elasticity. Comput. Methods Appl. Mech. Eng. 184(2–4), 303–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hiptmair R., Zheng W.: Local Multigrid in H(curl). J. Comput. Math. 27(5), 573–603 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kossaczký I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Math. 55, 275–288 (1994)

    Article  MATH  Google Scholar 

  33. Maubach J.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210–227 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. McCormick, S.: Fast adaptive composite grid (FAC) methods: theory for the variational case. In: Defect Correction Methods (Oberwolfach, 1983), volume 5 of Comput. Suppl., pp. 115–121. Springer, Vienna (1984)

  35. McCormick S.F., Thomas J.W.: The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comput. 46, 439–456 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mekchay K., Nochetto R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDE. SIAM J. Numer. Anal. 43(5), 1803–1827 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mitchell, W.F.: Unified multilevel adaptive finite element methods for elliptic problems. PhD thesis, University of Illinois at Urbana-Champaign (1988)

  38. Mitchell W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15(4), 326–347 (1989)

    Article  MATH  Google Scholar 

  39. Mitchell W.F.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput. 13, 146–167 (1992)

    Article  MATH  Google Scholar 

  40. Morin P., Nochetto R.H., Siebert K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Morin P., Nochetto R.H., Siebert K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nochetto R.H., Siebert K.G., Veeser A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R.A., Kunoth, A. (eds) Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin (2009)

    Google Scholar 

  43. Oswald, P.: Norm equivalencies and multilevel Schwarz preconditioning for variational problems. Forschungsergebnisse Math-1-92, Fak. Math. Informatik, FSU Jena (1992)

  44. Oswald, P.: On discrete norm estimates related to multilevel preconditioners in the finite element method. In: Constructive Theory of Functions, Proc. Int. Conf. Varna 1991, pp. 203–214, Sofia. Bulg. Acad. Sci. (1992)

  45. Oswald P.: Multilevel Finite Element Approximation, Theory and Applications. Teubner Skripten zur Numerik. Teubner Verlag, Stuttgart (1994)

    Google Scholar 

  46. Plaza A., Carey G.F.: Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 32(2), 195–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rivara M.C.: Design and data structure for fully adaptive, multigrid finite element software. ACM Trans. Math. Soft. 10, 242–264 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rivara M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21, 604–613 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  49. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software: the finite element toolbox ALBERTA. In: Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005). The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)

  50. Scott R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. PhD thesis, Purdue University, West Lafayette (1972)

  52. Stevenson R.: Stable three-point wavelet bases on general meshes. Numer. Math. 80(1), 131–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  53. Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  54. Stevenson R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Traxler C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  56. Vassilevski P.S., Wang J.: Stabilizing the hierarchical basis by approximate wavelets, I: theory. Numer. Linear Alg. Appl. 4(2), 103–126 (1997)

    Article  MathSciNet  Google Scholar 

  57. Vassilevski P.S., Wang J.: Stabilizing the hierarchical basis by approximate wavelets II: implementation and numerical results. SIAM J. Sci. Comput. 20(2), 490–514 (1998)

    Article  MathSciNet  Google Scholar 

  58. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Tecniques. B.G. Teubner (1996)

  59. Widlund, O.B.: Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In: Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.) Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 19–36. SIAM, Philadelphia (1992)

  60. Wu H., Chen Z.: Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China: Ser. A Math. 49(1), 1–28 (2006)

    Article  MATH  Google Scholar 

  61. Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  62. Xu J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing 56, 215–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Xu J.: An introduction to multigrid convergence theory. In: Chan, R., Chan, T., Golub, G. (eds) Iterative Methods in Scientific Computing, Springer, Berlin (1997)

    Google Scholar 

  64. Xu J., Zikatanov L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  65. Yserentant H.: On the multi-level splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  66. Yserentant H.: Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math. 58, 163–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

L. Chen was supported in part by NSF Grant DMS-0505454, DMS-0811272, and in part by 2010–2011 UC Irvine Academic Senate Council on Research, Computing and Libraries (CORCL). R. H. Nochetto was supported in part by NSF Grant DMS-0505454 and DMS-0807811. J. Xu was supported in part by NSF DMS-0609727, DMS 0915153, NSFC-10528102 and Alexander von Humboldt Research Award for Senior US Scientists.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Nochetto, R.H. & Xu, J. Optimal multilevel methods for graded bisection grids. Numer. Math. 120, 1–34 (2012). https://doi.org/10.1007/s00211-011-0401-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0401-4

Mathematics Subject Classification (2000)

Navigation