Skip to main content
Log in

Stability analysis of the cell centered finite-volume Muscl method on unstructured grids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The goal of this study is to apply the Muscl scheme to the linear advection equation on general unstructured grids and to examine the eigenvalue stability of the resulting linear semi-discrete equation. Although this semi-discrete scheme is in general stable on cartesian grids, numerical calculations of spectra show that this can sometimes fail for generalizations of the Muscl method to unstructured three-dimensional grids. This motivates our investigation of the influence of the slope reconstruction method and stencil on the eigenvalue stability of the Muscl scheme. A theoretical stability analysis of the first order upwind scheme proves that this method is stable on arbitrary grids. In contrast, a general theoretical result is very difficult to obtain for the Muscl scheme. We are able to identify a local property of the slope reconstruction that is strongly related to the appearance of unstable eigenmodes. This property allows to identify the reconstruction methods that are best suited for stable discretizations. The explicit numerical computation of spectra for a large number of two- and three-dimensional test cases confirms and completes the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal R.K., Halt D.W.: A compact high-order unstructured grids method for the solution of euler equations. Int. J. Numer. Meth. Fluids 31, 121–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barth T., Ohlberger M.: Finite volume methods: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds) Encyclopedia of Computational Mechanics, Wiley, New York (2004)

    Google Scholar 

  4. Barth, T.: Numerical Methods for Conservation Laws on Structured and Unstructured Meshes. VKI Lecture Series (2003)

  5. Ben-Artzi M., Falcovitz J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press, London (2003)

    MATH  Google Scholar 

  6. Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of Slope Limiters on Unstructured Grids. NAS Technical Report NAS-05-007, 43th AIAA (2005)

  7. Berthon C.: Why the MUSCL-Hancock scheme is L 1-stable. Numer. Math. 104, 27–46 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berthon C.: Stability of the MUSCL schemes for the Euler equations. Comm. Math. Sci. 3, 133–157 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Bertier, N.: Simulation des grandes échelles en aérothermique sur des maillages non structurés généraux. Thesis, University Paris 6 (2006)

  10. Bouchut F., Perthame F., Bourdarias C.: A MUSCL method satisfying all the numerical entropy inequalities. Math. Comp. 65, 1439–1461 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buffard, T., Clain, S.: Multi-Slope MUSCL Methods for Unstructured Meshes. University Clermont-Ferrand, preprint (2006)

  12. Chainais-Hillairet C.: Second order finite volume schemes for a nonlinear hyperbolic equation: error estimate. Math. Meth. Appl. Sci. 23(5), 467–490 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chakravarthy, S., Harten, A.: Multi-dimensional ENO Schemes for General Geometries. NASA Contractor Report NASA-CR-187637, ICASE Report No. 91–76 (1991)

  14. Chevalier, P., Courbet, B., Dutoya, D., Klotz, P., Ruiz, E., Troyes, J., Villedieu, P.: Cedre: Development and Validation of a Multiphysic Computational Software. In: First European Conference for Aerospace Sciences (EUCASS), Moscou, Russie (2005)

  15. Colella P., Woodward P.: The numerical simulation of two-dimensional flows with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Camarri S., Salvetti M.V., Koobus B., Dervieux A.: A low-diffusion Muscl scheme for LES on unstructured grids. Comput. Fluids 33(9), 1101–1129 (2004)

    Article  MATH  Google Scholar 

  17. Després B.: An explicit a priori estimate for a finite volume approximation of linear advection on non-cartesian grids. SIAM J. Numer. Anal. 42(2), 484–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deuflhard P., Bornemann F.: Scientific Computing with Ordinary Differential Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Eymard, R., Gallouet, T., Herbin, R.: Finite Volume Methods, Handbook of Numerical Analysis, vol. 5. In: Ciarlet, L. (ed.) North-Holland (1997)

  20. Godlewski E., Raviart P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (2002)

    Google Scholar 

  21. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  22. Gottlieb S., Shu C.W., Tadmor E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gustafsson, B.: The Godunov-Ryabenkii condition: the beginning of a new stability analysis. Tech. Report 1999-14, Uppsala University (1999)

  24. Haider, F.: Discrétisation spatiale en maillage non-structuré de type général et applications LES. Thesis, University Paris 6 (2009)

  25. Haider, F., Croisille, J.-P., Courbet, B.: Stability of the MUSCL method on general unstructured grids for applications to compressible flows. In: 5th ICCFD, July 2008, Séoul

  26. Harten A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, London (1985)

    MATH  Google Scholar 

  28. Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, London (1991)

    MATH  Google Scholar 

  29. Hirsch C.: Numerical Computation of Internal and External Flows, vol. 1,2. Wiley, New York (2001)

    Google Scholar 

  30. Householder A.S.: The Theory of Matrices in Numerical Analysis. Dover Publications, New York (1975)

    MATH  Google Scholar 

  31. Hubbard M.E.: Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155(1), 54–74 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Iske A., Sonar Th.: On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numer. Math. 74, 177–201 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jiang G.S., Shu C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kröner D.: Numerical Schemes for Conservation Laws. Wiley, Chichester and B.G. Teubner, Stuttgart (1997)

    MATH  Google Scholar 

  35. Khosla, S., Dionne, P.J., Lee, M.E., Smith, C.E.: Using Fourth Order Accurate Spatial Integration on Unstructured Meshes to Reduce LES Run Times. In: AIAA 2008-782, 46th AIAA (2008)

  36. Kim K.H., Kim C.: Accurate, Efficient and monotonic numerical methods for multi-dimensional compressible flows part II: multi-dimensional limiting process. J. Comput. Phys. 208(2), 570–615 (2005)

    Article  MATH  Google Scholar 

  37. Larchevêque L., Sagaut P., Mary I., Labbé O.: Large-eddy simulation of a compressible flow past à deep cavity. Phys. Fluid 15(1), 193–210 (2003)

    Article  Google Scholar 

  38. Leterrier, N.: Discrétisation spatiale en maillage non-structuré de type général. Thesis, University Paris 6 (2003)

  39. Leveque R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  40. Lupoglazoff, N., Rahier, G., Vuillot, F.: Application of the Cedre unstructured flow solver to jet noise computations. In: First European Conference for Aerospace Sciences (EUCASS), Moscou (2005)

  41. Merlet B., Vovelle J.: Error estimates for the finite volume scheme applied to advection equation. Numer. Math. 106, 129–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Perthame B., Qiu Y.: A variant of Van Leer’s method for multidimensional systems of conservation laws. J. Comp. Phys. 112, 370–381 (1996)

    Article  MathSciNet  Google Scholar 

  43. Reddy S.C., Trefethen N.: Stability of method of lines. Numer. Math. 62, 235–267 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Reichstadt, S., Bertier, N., Ristori, A., Bruel, P.: Towards LES of mixing processes inside a research ramjet combustor. In: 18th Symposium ISOABE, ISABE Paper-2007-1188. Beijing (2007)

  45. Seiner, J.M., Ponton, M., Jansen, B.J., Lagen, N.T.: The effects of temperature on supersonic jet noise emission. DGLR/AIAA, 92-02-046: 295-307 (1992)

  46. Selva, G.: Méthodes itératives pour l’intégration implicite des équations de l’aérothermochimie sur des maillages non-structurés. Thesis, Ecole Centrale de Paris (1998)

  47. Shu C.W., Osher S.: Efficent implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shu, C.W.: High order ENO and WENO schemes. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9. Springer, Heidelberg (1999)

  49. Sonar Th.: Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws. IMA J. Numer. Anal. 16(4), 549–581 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole Publ. (1989)

  51. Thornber B., Mosedale A., Drikakis D., Youngs D., Williams R.J.R.: An improved reconstruction method for compressible flows with low mach number features. J. Comput. Phys. 227(10), 4873–4894 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Toro E.: Riemann Solvers and Numerical Methods for Fluid Flows. Springer, Berlin (1999)

    Google Scholar 

  53. Van Leer B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  Google Scholar 

  54. Van Leer B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  55. Varga R.S.: Geršgorin and His Circles. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Haider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, F., Croisille, JP. & Courbet, B. Stability analysis of the cell centered finite-volume Muscl method on unstructured grids. Numer. Math. 113, 555–600 (2009). https://doi.org/10.1007/s00211-009-0242-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0242-6

Keywords

Mathematics Subject Classification (1991)

Navigation