Skip to main content

Advertisement

Log in

3-Indolepropionic acid mitigates sub-acute toxicity in the cardiomyocytes of epirubicin-treated female rats

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Epirubicin (EPI) is an effective chemotherapeutic against breast cancer, though EPI-related cardiotoxicity limits its usage. Endogenously derived 3-indolepropionic acid (3-IPA) from tryptophan metabolism is of interest due to its antioxidant capabilities which may have cardioprotective effects. Supplementation with 3-IPA may abate EPI's cardiotoxicity, and herein we studied the possibility of lessening EPI-induced cardiotoxicity in Wistar rats. Experimental rats (n = 30; BW 180–200 g) were randomly distributed in five cohorts (A–E; n = 6 each). Group A (control), Group B (EPI 2.5 mg/mL), and group C (3-IPA 40 mg/kg) while Groups D and E were co-treated with EPI (2.5 mg/mL) together with 3-IPA (D: 20 and E: 40 mg/kg). Following sacrifice, oxidative status, lipid profile, transaminases relevant to cardiac function, and inflammatory biomarkers were analysed. Also, 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and cardiac troponin T (cTnT) levels were assessed using an enzyme-linked immunosorbent assay (ELISA). EPI-initiated increases in cardiotoxicity biomarkers were significantly (p < 0.05) reduced by 3-IPA supplementation. Decreased antioxidant and increases in reactive oxygen and nitrogen species (RONS), 8-OHdG and lipid peroxidation were lessened (p < 0.05) in rat hearts co-treated with 3-IPA. EPI-induced increases in nitric oxide and myeloperoxidase were reduced (p < 0.05) by 3-IPA co-treatment. In addition, 3-IPA reversed EPI-mediated alterations in alanine aminotransferase (ALT), aspartate amino transaminases (AST), lactate dehydrogenase (LDH), cardiac troponin T (cTnT), and serum lipid profile including total cholesterol and triglycerides. Microscopic examination of the cardiac tissues showed that histopathological lesions severity induced by EPI was lesser in 3-IPA co-treated rats. Our findings demonstrate that supplementing endogenously derived 3-IPA can enhance antioxidant protection in the cardiac tissue susceptible to EPI toxicity in female rats. These findings may benefit breast cancer patients undergoing chemotherapy by further validating these experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used are available from the corresponding author upon reasonable request.

References 

  • Abbassi R, Chamkhia N, Sakly M (2010) Chloroform-induced oxidative stress in rat liver: Implication of metallothionein. Toxicol Ind Health 26(8):487–496

    Article  PubMed  CAS  Google Scholar 

  • Abdulle AE et al (2020) Serum free thiols predict cardiovascular events and all-cause mortality in the general population: a prospective cohort study. BMC Med 18(1):130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allain CC et al (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20(4):470–475

    Article  PubMed  CAS  Google Scholar 

  • Armenian S, Bhatia S (2018) Predicting and preventing anthracycline-related cardiotoxicity. Am Soc Clin Oncol Educ Book 38:3–12

    Article  PubMed  Google Scholar 

  • AVMA, A.V.M.A (2001) 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc 218(5):669–96

  • Bahadır A et al (2014) The role of nitric oxide in doxorubicin-induced cardiotoxicity: experimental study. Turk J Haematol: Off J Turk Soc Haematol 31:68–74

    Article  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practise of histological techniques, 6th edn. Churchill Livingstone Elsevier, Philadelphia, PA, pp 83–134

    Google Scholar 

  • Banke A et al (2018) Long-term effect of epirubicin on incidence of heart failure in women with breast cancer: insight from a randomized clinical trial. Eur J Heart Fail 20(10):1447–1453

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Lee PJ et al (2009) Expert opinion on the use of anthracyclines in patients with advanced breast cancer at cardiac risk. Ann Oncol 20(5):816–827

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HI, Gawehn K, Grassl M (1974) Methods of enzymatic analysis, vol 1, 2nd edn. Academic Press Inc, New York, NY

    Google Scholar 

  • Cardinale D et al (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109(22):2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Cardinale D, Iacopo F, Cipolla CM (2020) Cardiotoxicity of Anthracyclines. Front Cardiovasc Med 7:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB, Doane BM, Avram MJ, McDermott MM, Chang EB, Ozaki CK, Ho KJ (2018) Plasma microbiome-modulated indole-and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(5):1552–1562. https://doi.org/10.1016/j.jvs.2017.09.029

  • Chaulin AM (2022) Cardiac troponins metabolism: from biochemical mechanisms to clinical practice (literature review). Int J Mol Sci 22(20)

  • Cho YK, Jung CH (2021) HDL-C and cardiovascular risk: you don’t need to worry about extremely high HDL-C levels. J Lipid Atheroscler 10(1):57–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Clairborne A (1995) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press, pp 283–284

  • Cortese-Krott MM et al (2017) The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid Redox Signal 27(10):684–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai C et al (2020) Lactate dehydrogenase A governs cardiac hypertrophic growth in response to hemodynamic stress. Cell Rep 32(9):108087–108087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delemasure S et al (2007) Acute administration of epirubicin induces myocardial depression in isolated rat heart and production of radical species evaluated by electron spin resonance spectroscopy. J Cardiovasc Pharmacol 50(6):647–653

    Article  PubMed  CAS  Google Scholar 

  • Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, Kass DA, Marbán E, Hare JM (1999) Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 85(5):437-445. https://doi.org/10.1161/01.res.85.5.437

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Faul F et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Gianazza E et al (2021) Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxid Redox Signal 34(1):49–98

    Article  PubMed  CAS  Google Scholar 

  • Granell S et al (2003) Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med 31(2):525–530

    Article  PubMed  CAS  Google Scholar 

  • Green LC et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–9

    Article  PubMed  CAS  Google Scholar 

  • Hajjar RJ, Leopold JA (2006) Xanthine oxidase inhibition and heart failure: novel therapeutic strategy for ventricular dysfunction? Circ Res 98(2):169–171

    Article  PubMed  CAS  Google Scholar 

  • HematiAzandaryani A et al (2018) Epirubicin-calf thymus DNA interaction: a comprehensive investigation using molecular docking, spectroscopy and fluorescent quantum dots. Cell Mol Biol (Noisy-le-grand) 64(7):1–7

    Article  Google Scholar 

  • Hunyadi A (2019) The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites 39(6):2505–2533

  • Jacobs NJ, Mark PJV (1960) Determination of serum triacylglycerol. Arch Biochem Biophys 88:50

    Google Scholar 

  • Jaffe AS, Wu AH (2012) Troponin release–reversible or irreversible injury? Should we care? Clin Chem 58(1):148–150

    Article  PubMed  CAS  Google Scholar 

  • Jollow DJ et al (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–69

    Article  PubMed  CAS  Google Scholar 

  • Khaleseh F et al (2021) Enhancement of in vitro antitumour activity of epirubicin in HER2+ breast cancer cells using immunoliposome formulation. IET Nanobiotechnol 15(3):257–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Konopelski P et al (2021) Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, increases blood pressure via cardiac and vascular mechanisms in rats. Am J Physiol Regul Integr Comp Physiol 321(6):R969–R981. https://doi.org/10.1152/ajpregu.00142.2021

  • Ky B et al (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63(8):809–816

    Article  PubMed  CAS  Google Scholar 

  • Le Bot M-A et al (1991) Metabolism of doxorubicin, daunorubicin and epirubicin in human and rat hepatoma cells. Pharmacol Res 24(3):243–252

    Article  PubMed  Google Scholar 

  • Lee DM, Ecton KE, Trikha SRJ, Wrigley SD, Thomas KN, Battson ML, Wei Y, Johnson SA, Weir TL, Gentile CL (2020) Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am J Physiol Gastrointest Liver Physiol 319(1):G51–G62. https://doi.org/10.1152/ajpgi.00375.2019

  • Li J et al (2021) Predictive value of elevated alanine aminotransferase for in-hospital mortality in patients with acute myocardial infarction. BMC Cardiovasc Disord 21(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y et al (2020) The gut microbiota-produced indole-3-propionic acid confers the antihyperlipidemic effect of mulberry-derived 1-deoxynojirimycin. mSystems 5(5)

  • Liang CH et al (2008) Solamargine enhances HER2 expression and increases the susceptibility of human lung cancer H661 and H69 cells to trastuzumab and epirubicin. Chem Res Toxicol 21(2):393–399

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2017) The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine 12:4163–4176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lo YL, Wang W (2013) Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem Biol Interact 205(3):188–197

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  PubMed  CAS  Google Scholar 

  • Macedo AVS et al (2019) Efficacy of Dexrazoxane in Preventing Anthracycline Cardiotoxicity in Breast Cancer. JACC CardioOncol 1(1):68–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Minno A et al (2016) 8-Hydroxy-2-deoxyguanosine levels and heart failure: a systematic review and meta-analysis of the literature. Nutr Metab Cardiovasc Dis 27

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    Article  PubMed  CAS  Google Scholar 

  • Negatu DA, Gengenbacher M, Dartois V, Dick T (2020) Indole propionic acid, an unusual antibiotic produced by the gut microbiota, with anti-inflammatory and antioxidant properties. Front Microbiol 11:575586. https://doi.org/10.3389/fmicb.2020.575586

  • (OACU), T.O.o.A.C.a.U (2019) Guidelines for blood collection in mice and rats. In N. I. o. Helath (Ed.), NIH. United Kingdom: NIH. Available from: https://oacu.oir.nih.gov/training-resources.

  • Ohkawa HO, N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by. Thiobarbituric acid reaction. Anal Biochem 95: 351–358

  • Owumi SE, Dim UJ (2019) Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol Rep 6:202–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owumi SE et al (2021) 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos. Toxicology 463

  • Owumi SE et al (2022) Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats. Sci Rep 12(1):7438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owumi SE, Adedara IA, Oyelere AK (2022a) Indole-3-propionic acid mitigates chlorpyrifos-mediated neurotoxicity by modulating cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in rats. Environ Toxicol Pharmacol 89:103786

  • Owumi SE, Najophe ES, Otunla MT (2022b) 3-Indolepropionic acid prevented chlorpyrifos-induced hepatorenal toxicities in rats by improving anti-inflammatory, antioxidant, and pro-apoptotic responses and abating DNA damage. Environ Sci Pollut Res Int  29(49):74377–74393. https://doi.org/10.1007/s11356-022-21075-3

  • Owumi SE, Adebisi GE, Odunola OA (2023) Epirubicin toxicity in rat’s ovary and uterus: a protective role of 3-Indolepropionic acid supplementation. Chem Biol Interact 374:110414

    Article  PubMed  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Robert J (1994) Clinical pharmacokinetics of epirubicin. Clin Pharmacokinet 26(6):428–438

    Article  PubMed  CAS  Google Scholar 

  • Rotruck JT et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M et al (2008) New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. JNCI: J Natl Cancer Inst 100(15):1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Rynkowska A, Stepniak J, Karbownik-Lewinska M (2021) Melatonin and indole-3-propionic acid reduce oxidative damage to membrane lipids induced by high iron concentrations in porcine skin. Membranes (Basel) 11(8):571. https://doi.org/10.3390/membranes11080571

  • Simões R et al (2018) Troponin as a cardiotoxicity marker in breast cancer patients receiving anthracycline-based chemotherapy: a narrative review. Biomed Pharmacother 107:989–996

    Article  PubMed  Google Scholar 

  • Stull LB, Leppo MK, Szweda L, Gao WD, Marbán E (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95(10):1005–1011. https://doi.org/10.1161/01.RES.0000148635.73331

  • Tariq M et al (2016) Improved oral efficacy of epirubicin through polymeric nanoparticles: pharmacodynamic and toxicological investigations. Drug Deliv 23(8):2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Tebbi CK et al (2007) Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol 25(5):493–500

    Article  PubMed  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2’ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139

    Article  PubMed  CAS  Google Scholar 

  • Vassault A (1983) Lactate dehydrogenase. UV-method with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Weinheim: Verlag Chemie, pp 118–126

  • White HD (2011) Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 57(24):2406–2408

    Article  PubMed  CAS  Google Scholar 

  • Yvan-Charvet L et al (2019) Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 115(9):1393–1407

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicininduced cardiotoxicity. Nat Med 18:1639-1642

  • Zhang C et al (2018) Lipid metabolism in inflammation-related diseases. Analyst 143(19):4526–4536

    Article  PubMed  CAS  Google Scholar 

  • Zhang LS, Davies SS (2016) Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 8(1):46 https://doi.org/10.1186/s13073-016-0296-x

  • Zhang Z, Bi C, Buac D, Fan Y, Zhang X, Zuo J, Zhang P, Zhang N, Dong L, Dou QP (2013) Organic cadmium complexes as proteasome inhibitors and apoptosis inducers in human breast cancer cells. J Inorg Biochem 123:1–10

  • Zhao ZH et al (2019) Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med 51(9):1–14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. O, U.A, M.O, M. A, C.I and G. A: Conceptualization. U.A, M.O, M.A, C.I and G. A, and Project administration, data curation, analysis, investigation. S. O: Supervision, Visualization, validation. S. O, U.A, M.O, M. A, C.I and G. A: Writing, review, and editing. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Solomon Owumi.

Ethics declarations

Ethical approval and consent to participate

The protocol for this rodent study conforms to the University of Ibadan Animal Care and Use Research Ethics Committee (ACUREC) UI-ACUREC/034–0521/7 and the United States National Institute of Health (NIH) guide for the care and use of laboratory animals. All procedures followed the ARRIVE (Animal Research Reporting In Vivo Experiments) guidelines. Furthermore, we adhered to the 3-R guidelines for (replacement, reduction, and refinement) for this study’s care and use of experimental animals.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owumi, S., Arunsi, U., Otunla, M. et al. 3-Indolepropionic acid mitigates sub-acute toxicity in the cardiomyocytes of epirubicin-treated female rats. Naunyn-Schmiedeberg's Arch Pharmacol 397, 507–520 (2024). https://doi.org/10.1007/s00210-023-02618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02618-y

Keywords

Navigation