Skip to main content

Advertisement

Log in

An investigation of the effects of N-acetylcysteine on radiotherapy-induced testicular injury in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

According to data issued by the International Agency for Research on Cancer in 2012, the estimated number of new cases of all types of cancer worldwide was estimated to exceed 10 million, and 6 million of whom receive radiotherapy. Radiotherapy is the treatment of cancer using ionizing radiation. Our study investigated the effects of x-radiation resulting from radiotherapy (RT) on the testis at the molecular level, and prospectively considered the potential protective characteristics of antioxidants against testicular damage resulting from x-radiation. Forty male Sprague Dawley rats were allocated into five groups, control (group 1), abdominopelvic region 2-Gy-ionizing radiation (group 2), whole-body 6-Gy irradiation (group 3), 2 Gy abdominopelvic region irradiation and 300 mg/kg NAC treatment (group 4), and 6-Gy whole-body irradiation and 300 mg/kg NAC treatment (group 5). Disorganization and vacuolization were observed in the epithelial layer in atrophic seminiferous tubules in the only ionizing radiation (IR) groups. In addition, Johnsen’s score decreased in the only IR groups, while testis tissue malondialdehyde (MDA) and glutathione (GSH) tissue levels increased. N-Acetylcysteine (NAC) treatment groups Johnsen’s score and tissue GSH levels increased than only IR groups. On the other hand, tissue MDA levels decreased in the NAC treatment groups. The findings showed that ionizing radiation caused apoptosis in germinal epithelial cells led to the oxidative stress-mediated testicular injury. On the other hand, NAC may be useful in the prevention of testicular injury-suppressed ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-zeid SM, El-bialy BE, El-borai NB, Abubakr HO (2018) Radioprotective effect of Date syrup on radiation-induced damage in Rats. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  • Adaramoye OA, Adedara IA, Farombi EO (2012) Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats. Exp Toxicol Pathol 64:379–385

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MM, Ibrahim ZS, Alkafafy M, El-Shazly SA (2014) L-Carnitine protects against testicular dysfunction caused by gamma irradiation in mice. Acta Histochem 116:1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Aktoz T, Caloglu M, Yurut-Caloglu V et al (2017) Histopathological and biochemical comparisons of the protective effects of amifostine and l-carnitine against radiation-induced acute testicular toxicity in rats. Andrologia 49:1–7

    Article  CAS  Google Scholar 

  • Arıcıgil M, Dündar MA, Yücel A, Eryılmaz MA, Aktan M, Alan MA, Fındık S, Kılınç İ (2017) Melatonin prevents possible radiotherapy-induced thyroid injury. Int J Radiat Biol 93:1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Ash P (1980) The influence of radiation on fertility in man. Br J Radiol 53:271–278

    Article  CAS  PubMed  Google Scholar 

  • Aziz NM (2007) Cancer survivorship research: state of knowledge, challenges and opportunities. Acta Oncol (Madr) 46:417–432

    Article  Google Scholar 

  • Berk M, Malhi GS, Gray LJ, Dean OM (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 34:167–177

    Article  CAS  PubMed  Google Scholar 

  • Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55–138

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1975) In: Beutel (ed) Glutathione in red blood cell metabolism. A manual of biochemical methods, 2nd edn. Grune and Stratton, New York, pp 112–114

    Google Scholar 

  • Bing SJ, Kim MJ, Ahn G, Im J, Kim DS, Ha D, Cho J, Kim A, Jee Y (2014) Acidic polysaccharide of Panax ginseng regulates the mitochondria/caspase-dependent apoptotic pathway in radiation-induced damage to the jejunum in mice. Acta Histochem 116:514–521

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pen LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system : protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    Google Scholar 

  • Demir EO, Cakmak GK, Bakkal H, Turkcu UO, Kandemir N, Demir AS, Tascılar O (2011) N-acetyl-cysteine improves anastomotic wound healing after radiotherapy in rats. J Investig Surg 24:151–158

    Article  Google Scholar 

  • Dickinson DA, Moellering DR, Iles KE et al (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. N Y 384:527–537

    CAS  Google Scholar 

  • Dormandy TL (1971) The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 20:95–110

    Article  PubMed  Google Scholar 

  • Ekici K, Temelli O, Parlakpinar H, Samdanci E, Polat A, Beytur A, Tanbek K, Ekici C, Dursun IH (2016) Beneficial effects of aminoguanidine on radiotherapy-induced kidney and testis injury. Andrologia 48:683–692

    Article  CAS  PubMed  Google Scholar 

  • El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA (2007) Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf 66:278–286

    Article  CAS  PubMed  Google Scholar 

  • El-Missiry MA, Othman AI, El-Sawy MR, Lebede MF (2018) Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus. Int J Radiat Biol 0:1–27

    Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386

    Article  CAS  Google Scholar 

  • Gao S, Zhao Z, Wu R, Zeng Y, Zhang Z, Miao J, Yuan Z (2017) Bone marrow mesenchymal stem cell transplantation improves radiation-induced heart injury through DNA damage repair in rat model. Radiat Environ Biophys 56:63–77

    Article  CAS  PubMed  Google Scholar 

  • Geramizadeh B, Marzban M, Churg A (2016) Role of immunohistochemistry in the diagnosis of solitary fibrous tumor, a review. Iran J Pathol 11:195–203

    PubMed  PubMed Central  Google Scholar 

  • Ghobadi A, Shirazi A, Najafi M, Kahkesh MH, Rezapoor S (2017) Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J Med Phys 42:241–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Giusti AM, Giusti AM, Raimondi M et al (1998) Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation : a fluorescence spectroscopy study. Int J Radiat Biol 74:595–605

    Article  CAS  PubMed  Google Scholar 

  • Guo SX, Zhou HL, Huang CL, You CG, Fang Q, Wu P, Wang XG, Han CM (2015) Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Mar Drugs 13:2105–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanci H, Odaci E, Kaya H et al (2013) The effect of prenatal exposure to 900-MHz electromagnetic field on the 21-old-day rat testicle. Reprod Toxicol 42:203–209

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang Y, Li H, Zhang H, Li Z, Xiao L, Hu J, Ma Y, Zhang Q, Zhao X (2018) Comparative profiling of microRNAs reveals the underlying toxicological mechanism in mice testis following carbon ion radiation. Dose-Response 16:155932581877863

    Article  Google Scholar 

  • Howell SJ, Shalet SM (2005) Spermatogenesis after cancer treatment: damage and recovery (MEDICATIONS). J Natl Cancer Inst Monogr 2005:12–17

    Article  CAS  Google Scholar 

  • Ji HJ, Wang DM, Wu YP et al (2016) Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC Complement Altern Med 16:1–7

    Article  CAS  Google Scholar 

  • Jung JH, Jung J, Kim SK et al (2014) Alpha lipoic acid attenuates radiation-induced thyroid injury in rats. PLoS One 9:5–12

    Google Scholar 

  • Karabulut AB, Karadag N, Gurocak S, Kiran T, Tuzcu M, Sahin K (2014) Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy. Food Chem Toxicol 70:128–133

    Article  CAS  PubMed  Google Scholar 

  • Karaer IC, Simsek G, Yildiz A et al (2016) Melatonin’s protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med 45:444–449

    Article  CAS  Google Scholar 

  • Karslioglu I, Ertekin MV, Taysi S et al (2005) Radioprotective effects of melatonin on radiation-induced cataract. J Radiat Res 46:277–282

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Adhikari JS, Rizvi MA, Chaudhury NK (2015) Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice. J Biomed Sci 22(1):61–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilciksiz S (2008) The effect of N-acetylcysteine on biomarkers for radiation-induced oxidative damage in a rat model. Acta Med Okayama 62:403–409

    CAS  PubMed  Google Scholar 

  • Kilciksiz S, Demirel C, Ayhan SE et al (2011) N-acetylcysteine ameliorates nitrosative stress on radiation-inducible damage in rat liver. J BUON 16:154–159

    CAS  PubMed  Google Scholar 

  • Koc M, Taysi S, Buyukokuroglu ME, Bakan N (2003) Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res 44:211–215

    Article  CAS  PubMed  Google Scholar 

  • Konak M, Cincik H, Erkul E, Kucukodaci Z (2016) The protective effects of different treatments on rat salivary glands after radiotherapy. Eur Arch Oto-Rhino-Laryngology 273:4501–4506

    Article  Google Scholar 

  • Laguna MP, Pizzocaro G, Klepp O, Algaba F, Kisbenedek L, Leiva O, EAU Working Group on Oncological Urology (2001) EAU guidelines on testicular cancer. Eur Urol 40:102–110

    Article  CAS  PubMed  Google Scholar 

  • Lewanski CR, Gullick WJ (2001) Radiotherapy and cellular signaling. Lancet Oncol 2:366–370

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang B, Zhang H, et al (2018) Apoptosis induction by iron radiation via inhibition of autophagy in Trp53+/−-mouse testes: is chronic restraint-induced stress a modifying factor? Int J Biol Sci 14:1109–1121

  • Mane SD, Kamatham AN (2018) Ascorbyl stearate and ionizing radiation potentiate apoptosis through intracellular thiols and oxidative stress in murine T lymphoma cells. Chem Biol Interact 281:37–50

    Article  CAS  PubMed  Google Scholar 

  • Matsuu-Matsuyama M, Nakashima M, Shichijo K, Okaichi K, Nakayama T, Sekine I (2010) Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine. Radiat Res 174:52–61

    Article  CAS  PubMed  Google Scholar 

  • Meistrich ML, Finch M, Cunha MF et al (1982) Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res 42:122–131

    CAS  PubMed  Google Scholar 

  • Mercantepe F, Mercantepe T, Topcu A, Yılmaz A, Tumkaya L (2018) Protective effects of amifostine , curcumin , and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedeberg's Arch Pharmacol 391:915–931

    Article  CAS  Google Scholar 

  • Mihandoost E, Shirazi A, Mahdavi SR, Aliasgharzadeh A (2014) Consequences of lethal-whole-body gamma radiation and possible ameliorative role of melatonin. Sci World J 2014:1–9

    Article  CAS  Google Scholar 

  • Millea PJ (2009) N-acetylcysteine: multiple clinical applications. Am Fam Physician 80:265–269

    PubMed  Google Scholar 

  • Naeimi RA, Talebpour Amiri F, Khalatbary AR, Ghasemi A, Zargari M, Ghesemi M, Hosseinimehr SJ (2017) Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod Toxicol 72:115–121

    Article  CAS  PubMed  Google Scholar 

  • Orhon ZN, Uzal C, Kanter M, Erboga M, Demiroglu M (2016) Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats. Pathol Res Pract 212:437–443

    Article  CAS  PubMed  Google Scholar 

  • Özer MA, Polat N, Özen S, Parlakpınar H, Ekici K, Polat A, Vardı N, Tanbek K, Yildiz A (2017) Effects of molsidomine on retinopathy and oxidative stress induced by radiotheraphy in rat eyes. Curr Eye Res 42:803–809

    Article  CAS  PubMed  Google Scholar 

  • Perry DK, Smyth MJ, Wang HG, Reed JC, Duriez P, Poirier GG, Obeid LM, Hannun YA (1997) Bcl-2 acts upstream of the PARP protease and prevents its activation. Cell Death Differ 4:29–33

    Article  CAS  PubMed  Google Scholar 

  • Pouget JP, Georgakilas AG, Ravanat JL (2018) Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk-benefit analysis. Antioxid Redox Signal 29:1447–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall RJ, Lewis A (1951) The folin by oliver. Readings 193:265–275

    Google Scholar 

  • Rani V, Deep G, Singh RK, Palle K, Yadav UCS (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193

    Article  CAS  PubMed  Google Scholar 

  • Rao AVSK, Shaha C (2002) N-acetylcysteine prevents MAA induced male germ cell apoptosis: role of glutathione and cytochrome c. FEBS Lett 527:133–137

    Article  CAS  PubMed  Google Scholar 

  • Reliene R, Pollard JM, Sobol Z, Trouiller B, Gatti RA, Schiestl RH (2009) N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res - Fundam Mol Mech Mutagen 665:37–43

    Article  CAS  Google Scholar 

  • Salami S, Karami-Tehrani F (2003) Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem 36:247–253

    Article  CAS  PubMed  Google Scholar 

  • Shaban NZ, Ahmed AM et al (2017) Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. J Biol Res 24:1–11

    Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  PubMed  Google Scholar 

  • Smina TP, Maurya DK, Devasagayam TPA, Janardhanan KK (2015) Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst. Chem Biol Interact 233:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Li R, Xue J, Lan J, Xu H, Liu Y, Zhou L, Lu Y (2017) Azithromycin attenuates acute radiation-induced lung injury in mice. Oncol Lett 14:5211–5220

    PubMed  PubMed Central  Google Scholar 

  • Tascilar O, Çakmak GK, Emre AU et al (2014) N-acetylcycsteine attenuates the deleterious effects of radiation therapy on incisional wound healing in rats. Hippokratia 18:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thibodeau BJ, Lavergne V, Dekhne N, Benitez P, Amin M, Ahmed S, Nakamura JL, Davidson PR, Nakamura AO, Grills IS, Chen PY, Wobb J, Wilson GD (2018) Mutational landscape of radiation-associated angiosarcoma of the breast. Oncotarget 9:10042–10053

    Article  PubMed  PubMed Central  Google Scholar 

  • Velic D, Couturier AM, Ferreira MT, Rodrigue A, Poirier G, Fleury F, Masson JY (2015) DNA damage signalling and repair inhibitors: the long-sought-after achilles’ heel of cancer. Biomolecules 5:3204–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LS, Liu HJ, Xia ZB, Broxmeyer HE, Lu L (2000) Expression and activation of caspase-3/CPP32 in CD34+cord blood cells is linked to apoptosis after growth factor withdrawal. Exp Hematol 28:907–915

    Article  CAS  PubMed  Google Scholar 

  • WHO (2008) World Cancer report 2008. Lyon

  • Yeoh ASJ, Gibson RJ, Yeoh EEK, Bowen JM, Stringer AM, Giam KA, Keefe DMK (2007) A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor- B, COX-1, and COX-2. Mol Cancer Ther 6:2319–2327

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-M, Sun Q-X, Cheng Y (2017) Paeonol enhances the sensitivity of human ovarian cancer cells to radiotherapy-induced apoptosis due to downregulation of the phosphatidylinositol-3-kinase/Akt/phosphatase and tensin homolog pathway and inhibition of vascular endothelial growth factor. Exp Ther Med 14:3213–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contribution statement

AT conceived and designed research. AT, TM. SR, and LT conducted experiments. AT and HAU contributed new reagents or analytical tools. AT, TM, FM, HAU, SR, and LT analyzed data. TM, FM, SR, and AT wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Topcu.

Ethics declarations

Animal experiments and procedures were performed in accordance with the national guidelines for the use and care of laboratory animals. The study protocol was approved by the local animal care committee of Recep Tayyip Erdogan University (2018/7-14.02.2018).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topcu, A., Mercantepe, F., Rakici, S. et al. An investigation of the effects of N-acetylcysteine on radiotherapy-induced testicular injury in rats. Naunyn-Schmiedeberg's Arch Pharmacol 392, 147–157 (2019). https://doi.org/10.1007/s00210-018-1581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1581-6

Keywords

Navigation