Skip to main content
Log in

Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Tobacco smoking is a risk factor for many diseases, and nicotine is a major component of tobacco. Our previous work revealed that nicotine can induce myocardial fibrosis. This study aimed to investigate whether nicotine can induce cardiomyocyte apoptosis and to explore the mechanisms involved. Cardiomyocytes were exposed to different nicotine concentrations for 48 h. MTT assay showed that the viability of cardiomyocytes was significantly inhibited by nicotine in a dose- and time-dependent manner. Loss of mitochondrial membrane potential, nuclear and DNA defragmentation determined by TUNEL and ELISA assays, and morphological alterations all revealed the pro-apoptotic property of nicotine. Meanwhile, miR-133, a muscle-specific microRNA, was markedly downregulated by nicotine. Consistently, caspase-9, a target gene for miR-133, was significantly upregulated, leading to an increase in caspase-3, in nicotine-treated cardiomyocytes compared to non-treated cells. Furthermore, ERK1/2 protein levels were considerably downregulated, along with reduction of serum response factor (SRF), which is a downstream target protein of ERK1/2 and an upstream transactivator of miR-133 as well. Our findings therefore revealed that inhibition of the ERK1/2–SRF–miR-133 signaling pathway to increase caspases-9 and −3 is a novel mechanism for nicotine to induce cardiomyocyte apoptosis and these tobacco smokers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL (1988) Drug therapy. Pharmacologic aspects of cigarette smoking and nicotine addition. N Engl J Med 319:1318–1330

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Pan Z, Lu Y (2010) The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem 17(5):407–411

    Article  CAS  PubMed  Google Scholar 

  • Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardinale A, Nastrucci C, Cesario A, Russo P (2012) Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 42:68–89

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Chen C, Huo R, Wang N, Li Z, Tu YJ, Hu JT, Chu X, Huang W, Yang BF (2010) Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55:946–952

    Article  CAS  PubMed  Google Scholar 

  • Ford CL, Zlabek JA (2005) Nicotine replacement therapy and cardiovascular disease. Mayo Clin Proc 80:652–656

    Article  CAS  PubMed  Google Scholar 

  • Goette A, Lendeckel U, Kuchenbecker A, Bukowska A, Peters B, Klein HU, Huth C, Rocken C (2007) Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart 93:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Gritz ER, Fingeret MC, Vidrine DJ, Lazev AB, Mehta NV, Reece GP (2006) Successes and failures of the teachable moment: smoking cessation in cancer patients. Cancer 106:17–27

    Article  PubMed  Google Scholar 

  • Grozio A, Catassi A, Cavalieri Z, Paleari L, Cesario A, Russo P (2007) Nicotine, lung and cancer. Anticancer Agents Med Chem 7:461–466

    Article  CAS  PubMed  Google Scholar 

  • Grundtvig M, Hagen TP, Amrud ES, Reikvam A (2012) Reduced life expectancy after an incident hospital diagnosis of acute myocardial infarction—effects of smoking in women and men. Int J Cardiol 167:2792–2797

    Google Scholar 

  • Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253

    Article  CAS  PubMed  Google Scholar 

  • He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW (2011) Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 18:22

    Article  CAS  PubMed  Google Scholar 

  • Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389

    Article  CAS  PubMed  Google Scholar 

  • Hubbard R, Lewis S, Smith C, Godfrey C, Smeeth L, Farrington P, Britton J (2005) Use of nicotine replacement therapy and the risk of acute myocardial infarction, stroke, and death. Tob Control 14:416–421

    Article  CAS  PubMed  Google Scholar 

  • Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnamurthy P, Subramanian V, Singh M, Singh K (2007) Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension 49:865–872

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J, Xiao D, Xue Q, Rejali M, Yang S, Zhang L (2008) Prenatal nicotine exposure increases heart susceptibility to ischemia/reperfusion injury in adult offspring. J Pharmacol Exp Ther 324:331–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Cardiovasc Res 109:941–961

    CAS  Google Scholar 

  • Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD, Moxham J, Hopkinson NS, Polkey MI, Kemp PR (2012) Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 67:26–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang Y, Shan H, Pan Z, Li X, Li B, Xu C, Zhang B, Zhang F, Dong D, Song W, Qiao G, Yang B (2009) MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 84:434–441

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Shan H, Luo X, Bai Y, Sun L, Song W, Xu C, Wang Z, Yang B (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, Shimizu T, Okano T, Kasanuki H, Hagiwara N, Komuro I (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119:2204–2217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyauchi M, Qu Z, Miyauchi Y, Zhou SM, Pak H, Mandel WJ, Fishbein MC, Chen PS, Karagueuzian HS (2005) Chronic nicotine in hearts with healed ventricular myocardial infarction promotes atrial flutter that resembles typical human atrial flutter. Am J Physiol Heart Circ Physiol 288:H2878–H2886

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850

    Article  CAS  PubMed  Google Scholar 

  • Ravingerova T, Barancik M, Strniskova M (2003) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138

    Article  CAS  PubMed  Google Scholar 

  • Selikoff IJ, Hammond EC (1979) Asbestos and smoking. JAMA 242:458–459

    Article  CAS  PubMed  Google Scholar 

  • Shan H, Zhang Y, Lu Y, Pan Z, Cai B, Wang N, Li X, Feng T, Hong Y, Yang B (2009) Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 83:465–472

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH (2012) Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 4:617–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villar AV, Merino D, Wenner M, Llano M, Cobo M, Montalvo C, Garcia R, Martin-Duran R, Hurle JM, Hurle MA (2011) Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis. Heart 97:1132–1137

    Article  PubMed  Google Scholar 

  • Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Zhao JL, Lau WB, Zhang YQ, Qiao ZD, Wang YJ (2011) Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor. Int Immunopharmacol 11:675–682

    Article  CAS  PubMed  Google Scholar 

  • Webster KA (2007) Programmed death as a therapeutic target to reduce myocardial infarction. Trends Pharmacol Sci 28:492–499

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu Y, Li Y, Xu C, Li X, Zhu D, Zhang Y, Xing S, Wang H, Zhang Z, Shan H (2012) Tanshinone IIA improves miR-133 expression through MAPK ERK1/2 pathway in hypoxic cardiac myocytes. Cell Physiol Biochem 30:843–852

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program) (2013CB531104), the National Nature Science Foundation of China (nos. 81230081, 31171094, and 30901208), and the Postgraduate Innovation Fund of Heilongjiang province (YJSCX2012-245HLJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baofeng Yang or Hongli Shan.

Additional information

Lu Wang and Xuelian Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, X., Zhou, Y. et al. Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis. Naunyn-Schmiedeberg's Arch Pharmacol 387, 197–206 (2014). https://doi.org/10.1007/s00210-013-0929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0929-1

Keywords

Navigation