Skip to main content
Log in

Multiple mechanisms underlie metastasis suppressor function of NM23-H1 in melanoma

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

nm23-h1 was the first metastasis suppressor gene to be identified in humans, with early studies demonstrating its ability to inhibit the metastatic potential of breast carcinoma and melanoma cell lines. This report outlines recent findings from our laboratory indicating that the metastasis suppressor function of NM23-H1 in human melanoma involves a spectrum of molecular mechanisms. Analysis of NM23-H1-dependent profiles of gene expression in human melanoma cell lines has identified a host of target genes that appear to mediate suppression of directional motility. Of particular interest is a subset of motility-suppressing genes whose regulation by NM23-H1 is independent of its known kinase and 3′–5′ exonuclease activities. In parallel, we have recently observed that NM23-H1 expression appears to be required for genomic stability and for optimal repair of DNA damage produced by ultraviolet radiation and other agents. Thus, NM23-H1 might oppose not only the motile and invasive characteristics of metastatic cells but also the acquisition of mutations that drive malignant progression to the metastatic phenotype itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal RP, Robinson B, Parks RE (1978) Nucleoside diphosphokinase from erythrocytes. Methods Enzymol 51:376–386

    Article  PubMed  CAS  Google Scholar 

  • Antonicelli FF, Lorin J, Kurdykowski S, Gangloff SC, Le NR, Sallenave JM, Hornebeck W, Grange F, Bernard P (2010) CXCL10 reduces melanoma proliferation and invasivity in vitro and in vivo. Br J Dermatol (in press)

  • Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135–147

    Article  PubMed  CAS  Google Scholar 

  • Boissan M, De WO, Lizarraga F, Wendum D, Poincloux R, Chignard N, Desbois-Mouthon C, Dufour S, Nawrocki-Raby B, Birembaut P, Bracke M, Chavrier P, Gespach C, Lacombe ML (2010) Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res 70:7710–7722

    Article  PubMed  CAS  Google Scholar 

  • Brandt DT, Grosse R (2007) Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep 8:1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Briggs MW, Sacks DB (2003) IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep 4:571–574

    Article  PubMed  CAS  Google Scholar 

  • Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23

    Article  PubMed  CAS  Google Scholar 

  • D'Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, Arrigoni G, Cossu A, Palmieri G, Aravind L, Zollo M (2004) Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5:137–149

    Article  PubMed  Google Scholar 

  • Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  PubMed  CAS  Google Scholar 

  • Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, Klaren R, Grone EF, Wiesel M, Gudemann C, Kuster J, Schott W, Staehler G, Kretzler M, Hollstein M, Grone HJ (2002) Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol 160:2169–2180

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Hanawalt PC (1997) Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272:28073–28080

    Article  PubMed  CAS  Google Scholar 

  • Friedl A, Stoesz SP, Buckley P, Gould MN (1999) Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J 31:433–441

    Article  PubMed  CAS  Google Scholar 

  • Hanai J, Mammoto T, Seth P, Mori K, Karumanchi SA, Barasch J, Sukhatme VP (2005) Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells. J Biol Chem 280:13641–13647

    Article  PubMed  CAS  Google Scholar 

  • Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308

    Article  PubMed  CAS  Google Scholar 

  • Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS (2002) Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem JID 277(35):32389–32399

    Article  CAS  Google Scholar 

  • Horak CE, Lee JH, Elkahloun AG, Boissan M, Dumont S, Maga TK, Arnaud-Dabernat S, Palmieri D, Stetler-Stevenson WG, Lacombe ML, Meltzer PS, Steeg PS (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67:7238–7246

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K, Kim I, Koh GY (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70:10411–10421

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Xing Z, Liu B, Pedigo N, Zimmer S, Bai Z, Postel E, Kaetzel DM (2002) NM23-H1 cleaves and represses transcriptional activity of nuclease-hypersensitive elements in the PDGF-A promoter. J Biol Chem 277:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3′–5′ exonuclease activity. J Biol Chem 279:18073–18084

    Article  PubMed  CAS  Google Scholar 

  • MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS (1996) Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem JID 271:25107–25116

    CAS  Google Scholar 

  • Mataraza JM, Briggs MW, Li Z, Frank R, Sacks DB (2003) Identification and characterization of the Cdc42-binding site of IQGAP1. Biochem Biophys Res Commun 305:315–321

    Article  PubMed  CAS  Google Scholar 

  • Mateer SC, Wang N, Bloom GS (2003) IQGAPs: integrators of the cytoskeleton, cell adhesion machinery, and signaling networks. Cell Motil Cytoskeleton 55:147–155

    Article  PubMed  CAS  Google Scholar 

  • Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260

    Article  PubMed  CAS  Google Scholar 

  • Merlino G (2009) Building the perfect beast: complex mouse models teach surprisingly simple melanoma lessons. Pigment Cell Melanoma Res 22:246–247

    Article  PubMed  Google Scholar 

  • Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Meneses PI, Lan K, Robertson ES (2008) The suppressor of metastasis Nm23-H1 interacts with the Cdc42 Rho family member and the pleckstrin homology domain of oncoprotein Dbl-1 to suppress cell migration. Cancer Biol Ther 7:677–688

    Article  PubMed  CAS  Google Scholar 

  • Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063

    Article  PubMed  CAS  Google Scholar 

  • Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98:4385–4390

    Article  PubMed  CAS  Google Scholar 

  • Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118:915–922

    Article  PubMed  CAS  Google Scholar 

  • Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480

    Article  PubMed  CAS  Google Scholar 

  • Postel EH, Wohlman I, Zou X, Juan T, Sun N, D'Agostin D, Cuellar M, Choi T, Notterman DA, La Perle KM (2009) Targeted deletion of Nm23/nucleoside diphosphate kinase A and B reveals their requirement for definitive erythropoiesis in the mouse embryo. Dev Dyn 238:775–787

    Article  PubMed  CAS  Google Scholar 

  • Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256:137–165

    Article  PubMed  CAS  Google Scholar 

  • Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Eschelman DJ, Gonsalves CF, Terai M, Chervoneva I, McCue PA, Shields JA, Shields CL, Yamamoto A, Berd D, Mastrangelo MJ, Sullivan KL (2008) Immunoembolization of malignant liver tumors, including uveal melanoma, using granulocyte–macrophage colony-stimulating factor. J Clin Oncol %20 26:5436–5442

    Article  CAS  Google Scholar 

  • Shevelev IV, Hübscher U (2002) The 3′–5′ exonucleases. Nat Rev Mol Cell Biol 3:1–12

    Article  Google Scholar 

  • Steeg PS, Bevilacqua G, Kopper L, Thorgerisson UR, Talmadge JE, Liotta LA, Sobel M (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–205

    Article  PubMed  CAS  Google Scholar 

  • Subramanian C, Cotter MA, Robertson ES (2001) Epstein–Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7:350–355

    Article  PubMed  CAS  Google Scholar 

  • Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH, Kahn CR (2001) Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61:2071–2079

    PubMed  CAS  Google Scholar 

  • Wagner PD, Vu ND (1995) Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. J Biol Chem JID 270(37):21758–21764

    CAS  Google Scholar 

  • Wagner PD, Steeg PS, Vu ND (1997) Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94:9000–9005

    Article  PubMed  CAS  Google Scholar 

  • White CD, Brown MD, Sacks DB (2009) IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett 583:1817–1824

    Article  PubMed  CAS  Google Scholar 

  • Wong D, Korz W (2008) Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res 14:7975–7980

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mori K, Li JY, Barasch J (2003) Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol 285:F9–F18

    PubMed  CAS  Google Scholar 

  • Yang G, Curley D, Bosenberg MW, Tsao H (2007) Loss of xeroderma pigmentosum C (Xpc) enhances melanoma photocarcinogenesis in Ink4a-Arf-deficient mice. Cancer Res 67:5649–5657

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Jarrett SG, Craven R, Kaetzel DM (2009) YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res 660:74–78

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, McCorkle JR, Novak M, Yang M, Kaetzel DM (2011) Metastasis suppressor function of NM23-H1 requires its 3′;–5′ exonuclease activity. Int J Cancer 128:40–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kaetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, M., Jarrett, S.G., McCorkle, J.R. et al. Multiple mechanisms underlie metastasis suppressor function of NM23-H1 in melanoma. Naunyn-Schmiedeberg's Arch Pharmacol 384, 433–438 (2011). https://doi.org/10.1007/s00210-011-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0621-2

Keywords