Skip to main content
Log in

Potentiation of excitatory serotonergic responses by MK-801 in the medial prefrontal cortex

Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

New atypical antipsychotics show a greater affinity to serotonergic rather than to dopamine receptors, suggesting that serotonin (5-HT) has a major role in the pathophysiology and treatment of schizophrenia. The goal of this study was to characterise the response of pyramidal neurons in the medial prefrontal cortex (mPFC) to 5-HT and NMDA before and after administration of the NMDA receptor antagonist, MK-801 (dizocilpine), a well-validated pharmacological model of psychosis. mPFC pyramidal (glutamatergic) neurons were recorded in urethane-anaesthetised rats. The responses to NMDA and 5-HT were assessed using in vivo electrophysiology and microiontophoresis. The 5-HT2A/2C antagonist ritanserin and the 5-HT1A antagonist WAY100635 were used to block 5-HT responses. MK-801 decreased the NMDA-induced excitatory responses and increased NMDA-evoked burst activity among mPFC pyramidal neurons. Three subpopulations of pyramidal cells were identified according to their responses to 5-HT: excitation (33%), inhibition (40%) and non-response (27%). The inhibitory responses were blocked by WAY100635 in 100% of cases, but not by ritanserin; the excitatory responses were blocked by ritanserin in 75% of cases, but not by WAY100635. The administration of MK-801 potentiated the firing rate of excitatory responses but did not modify the inhibitory responses induced by microiontophoretic application of 5-HT. These results suggest that MK-801 modifies 5-HT synapses in the mPFC by potentiating the excitatory 5-HT2A/2C responses and attenuating NMDA excitations. These data indicate that 5-HT excitatory transmission is selectively impaired at the mPFC level in this pharmacological model of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50(10):750–757

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–71

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 31:302–312

    Article  PubMed  CAS  Google Scholar 

  • Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299

    Article  PubMed  Google Scholar 

  • Amargos-Bosch M, Lopez-Gil X, Artigas F, Adell A (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9:565–573

    Article  PubMed  CAS  Google Scholar 

  • Andine P, Widermark N, Axelsson R, Nyberg G, Olofsson U, Martensson E, Sandberg M (1999) Characterisation of MK-801-induced behavior as a putative rat model of psychosis. J Pharmacol Exp Ther 290:1393–1408

    PubMed  CAS  Google Scholar 

  • Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412

    Article  PubMed  CAS  Google Scholar 

  • Ashby CR Jr, Jiang LH, Kasser RJ, Wang RY (1990) Electrophysiological characterisation of 5-hydroxytryptamine2 receptors in the rat medial prefrontal cortex. J Pharmacol Exp Ther 252:171–178

    PubMed  CAS  Google Scholar 

  • Ashby CR Jr, Edwards E, Wang RY (1994) Electrophysiological evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in the rat medial prefrontal cortex: an iontophoretic study. Synapse 17:173–181

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    Article  PubMed  CAS  Google Scholar 

  • Barbato LM, Potkin SG, Heisterberg J, Yeung PP, Shapira NA (2006) A randomized, double-blind, placebo-controlled study of bifeprunox, a partial dopamine D2 receptor agonist, in patients with acute exacerbations of schizophrenia. Neuropsychopharmacology 31:S251–S252

    Google Scholar 

  • Bartho P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsaki G (2004) Characterisation of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 92:600–608

    Article  PubMed  Google Scholar 

  • Bergqvist PB, Dong J, Blier P (1999) Effect of atypical antipsychotic drugs on 5-HT2 receptors in the rat orbito-frontal cortex: an in vivo electrophysiological study. Psychopharmacology (Berl) 143:89–96

    Article  CAS  Google Scholar 

  • Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811

    PubMed  CAS  Google Scholar 

  • Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880

    Article  PubMed  CAS  Google Scholar 

  • Carlsson ML (1995) The selective 5-HT2A receptor antagonist MDL 100, 907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse–implications for psychosis. J Neural Transm Gen Sect 100:225–237

    Article  PubMed  CAS  Google Scholar 

  • Casey D, Barbato LM, Heisterberg J, Yeung PP, Shapira NA (2006) Efficacy and safety of bifeprunox in the treatment of patients with acute exacerbations of schizophrenia: results of a dose-finding study. Neuropsychopharmacology 31:S119

    Google Scholar 

  • Casey DE, Sands EE, Heisterberg J, Yang HM (2008) Efficacy and safety of bifeprunox in patients with an acute exacerbation of schizophrenia: results from a randomized, double-blind, placebo-controlled, multicenter, dose-finding study. Psychopharmacology (Berl) 200:317–331

    Article  CAS  Google Scholar 

  • Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT receptor antagonist M100, 907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem 91:189–199

    Article  PubMed  CAS  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21:9917–9929

    PubMed  CAS  Google Scholar 

  • Cochilla AJ, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Cooper DC (2002) The significance of action potential bursting in the brain reward circuit. Neurochem Int 41:333–340

    Article  PubMed  CAS  Google Scholar 

  • Dean B (2002) Understanding the pathology of schizophrenia: recent advances from the study of the molecular architecture of postmortem CNS tissue. Postgrad Med J 78:142–148

    Article  PubMed  CAS  Google Scholar 

  • Dean B, Hayes W, Hill C, Copolov D (1998) Decreased serotonin2A receptors in Brodmann’s area 9 from schizophrenic subjects. A pathological or pharmacological phenomenon? Mol Chem Neuropathol 34:133–145

    Article  PubMed  CAS  Google Scholar 

  • el Mansari M, Blier P (1997) In vivo electrophysiological characterisation of 5-HT receptors in the guinea pig head of caudate nucleus and orbitofrontal cortex. Neuropharmacology 36:577–588

    Article  PubMed  CAS  Google Scholar 

  • Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J Pharmacol 39:357–364

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Gleason SD, Shannon HE (1997) Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology (Berl) 129:79–84

    Article  CAS  Google Scholar 

  • Glennon RA, Dukat M, Westkaemper RB (2000) Serotonin receptor subtypes and ligands. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. The fourth generation of progress. Raven Press Ltd, New York

    Google Scholar 

  • Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl) 185:255–262

    Article  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gratton A, Hoffer BJ, Freedman R (1987) Electrophysiological effects of phencyclidine in the medial prefrontal cortex of the rat. Neuropharmacology 26:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116 discussion 116-118

    Article  PubMed  CAS  Google Scholar 

  • Grudt TJ, Jahr CE (1990) Quisqualate activates N-methyl-D-aspartate receptor channels in hippocampal neurons maintained in culture. Mol Pharmacol 37:477–481

    PubMed  CAS  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42:529–545

    Article  PubMed  CAS  Google Scholar 

  • Hajos M, Richards CD, Szekely AD, Sharp T (1998) An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87:95–108

    Article  PubMed  CAS  Google Scholar 

  • Hajos M, Gartside SE, Varga V, Sharp T (2003) In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 45:72–81

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419

    Article  PubMed  CAS  Google Scholar 

  • Herrero I, Miras-Portugal MT, Sanchez-Prieto J (1992) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360:163–166

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2006) Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: rate-dependent influence and interaction with NMDA receptors. Cereb Cortex 16:93–105

    Article  PubMed  Google Scholar 

  • Huetter JE, Bean PB (1988) Block of N-methyl-D-aspartate- activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 85:1307–1311

    Article  Google Scholar 

  • Huntley GW, Vickers JC, Morrison JH (1994) Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. Trends Neurosci 17:536–543

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95:735–740

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J Comp Neurol 417:337–348

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, Thierry AM, Wiklund L, Glowinski J (1992) Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission. Eur J Neurosci 4:1285–1295

    Article  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Jodo E, Chiang C, Aston-Jones G (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83:63–79

    Article  PubMed  CAS  Google Scholar 

  • Jodo E, Suzuki Y, Takeuchi S, Niwa S, Kayama Y (2003) Different effects of phencyclidine and methamphetamine on firing activity of medial prefrontal cortex neurons in freely moving rats. Brain Res 962:226–231

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476

    PubMed  CAS  Google Scholar 

  • Kargieman L, Santana N, Mengod G, Celada P, Artigas F (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci U S A 104:14843–14848

    Article  PubMed  CAS  Google Scholar 

  • Kashiwa A, Nishikawa T, Nishijima K, Umino A, Takahashi K (1995) Dizocilpine (MK-801) elicits a tetrodotoxin-sensitive increase in extracellular release of dopamine in rat medial frontal cortex. Neurochem Int 26:269–279

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Ketteler HJ, McCloskey TC, Sullivan CK, Dudley MW, Schmidt CJ (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100, 907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15:116–124

    Article  PubMed  CAS  Google Scholar 

  • Krobert KA, Levy FO (2002) The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br J Pharmacol 135:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169:215–233

    Article  CAS  Google Scholar 

  • Kusumi I, Takahashi Y, Suzuki K, Kameda K, Koyama T (2000) Differential effects of subchronic treatments with atypical antipsychotic drugs on dopamine D2 and serotonin 5-HT2A receptors in the rat brain. J Neural Transm 107:295–302

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Lipski WJ, Grace AA (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J Neurosci 25:6066–6075

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F, Gobert A, Rivet JM, Millan MJ (1994) Blockade of transmission at NMDA receptors facilitates the electrical and synthetic activity of ascending serotoninergic neurones. Brain Res 656:427–431

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Clark S, Lewis DV, Wilson WA (2002) NMDA receptor antagonists dis-inhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci 22:3070–3080

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Moghaddam B (1995) Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. J Pharmacol Exp Ther 274:1209–1215

    PubMed  CAS  Google Scholar 

  • Lopez-Gil X, Babot Z, Amargos-Bosch M, Sunol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Carlsson ML, Hjorth S (1998a) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. NeuroReport 9:2985–2988

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Waters N, Schmidt CJ, Carlsson A, Carlsson ML (1998b) Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 105:365–396

    Article  CAS  Google Scholar 

  • Maurel-Remy S, Bervoets K, Millan MJ (1995) Blockade of phencyclidine-induced hyperlocomotion by clozapine and MDL 100, 907 in rats reflects antagonism of 5-HT2A receptors. Eur J Pharmacol 280:R9–11

    Article  PubMed  CAS  Google Scholar 

  • McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27:12601–12610

    Article  PubMed  CAS  Google Scholar 

  • McGinty VB, Grace AA (2007) Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and pavlovian conditioned stimuli. Cereb Cortex 18(8):1961–1972

    Article  PubMed  Google Scholar 

  • Mechri A, Saoud M, Khiari G, d’Amato T, Dalery J, Gaha L (2001) Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine. Encephale 27:53–59

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115S

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  • Miwa A, Robinson HP, Kawai N (1993) Presynaptic glutamate receptors depress inhibitory postsynaptic transmission in lobster neuromuscular synapse. J Neurophysiol 70:1159–1167

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Monaghan DT, Cotman CW (1986) Identification and properties of N-methyl-D-aspartate receptors in rat brain synaptic plasma membranes. Proc Natl Acad Sci U S A 83:7532–7536

    Article  PubMed  CAS  Google Scholar 

  • Muntasir HA, Bhuiyan MA, Ishiguro M, Ozaki M, Nagatomo T (2006) Inverse agonist activity of sarpogrelate, a selective 5-HT2A-receptor antagonist, at the constitutively active human 5-HT2A receptor. J Pharmacol Sci 102:189–195

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13:335–345

    Article  PubMed  CAS  Google Scholar 

  • Olverman HJ, Jones AW, Watkins JC (1984) L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature 307:460–462

    Article  PubMed  CAS  Google Scholar 

  • Padin JF, Rodriguez MA, Dominguez E, Dopeso-Reyes IG, Buceta M, Cano E, Sotelo E, Brea J, Caruncho HJ, Isabel Cadavid M, Castro M, Isabel Loza M (2006) Parallel regulation by olanzapine of the patterns of expression of 5-HT2A and D3 receptors in rat central nervous system and blood cells. Neuropharmacology 51:923–932

    Article  PubMed  CAS  Google Scholar 

  • Pallotta M, Segieth J, Whitton PS (1998) N-methyl-d-aspartate receptors regulate 5-HT release in the raphe nuclei and frontal cortex of freely moving rats: differential role of 5-HT1A autoreceptors. Brain Res 783:173–178

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. San Diego Academic, San Diego

    Google Scholar 

  • Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    Article  PubMed  CAS  Google Scholar 

  • Pralong D, Tomaskovic-Crook E, Opeskin K, Copolov D, Dean B (2000) Serotonin(2A) receptors are reduced in the planum temporale from subjects with schizophrenia. Schizophr Res 44:35–45

    Article  PubMed  CAS  Google Scholar 

  • Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15:1–14

    Article  PubMed  Google Scholar 

  • Rapaport M, Barbato LM, Heisterberg J, Yeung PP, Shapira NA (2006) Efficacy and safety of bifeprunox versus placebo in the treatment of patients with acute exacerbations of schizophrenia. Neuropsychopharmacology 31:S184

    Google Scholar 

  • Rueter LE, Tecott LH, Blier P (2000) In vivo electrophysiological examination of 5-HT2 responses in 5-HT2C receptor mutant mice. Naunyn Schmiedebergs Arch Pharmacol 361:484–491

    Article  PubMed  CAS  Google Scholar 

  • Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H, Giegling I, Genius J, McCarley RW, Moller HJ, Grunze H (2006) A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721–729

    Article  PubMed  CAS  Google Scholar 

  • Rung JP, Carlsson A, Ryden Markinhuhta K, Carlsson ML (2005) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:827–832

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 7:3–23

    PubMed  CAS  Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

    Article  PubMed  Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2, 5-dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    PubMed  CAS  Google Scholar 

  • Schwabe K, Koch M (2004) Role of the medial prefrontal cortex in N-methyl-D-aspartate receptor antagonist induced sensorimotor gating deficit in rats. Neurosci Lett 355:5–8

    Article  PubMed  CAS  Google Scholar 

  • Schwartz NE, Alford S (2000) Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release. J Neurophysiol 84:415–427

    PubMed  CAS  Google Scholar 

  • Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–1816

    Article  PubMed  Google Scholar 

  • Suzuki Y, Jodo E, Takeuchi S, Niwa S, Kayama Y (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114:769–779

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, O'Donnell P (2007) D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse 61:843–850

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Serafini R, Stasi MA, Caccia S, Conti I, Tridico RV, Samanin R (1989) Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats. J Pharmacol Exp Ther 249:278–283

    PubMed  CAS  Google Scholar 

  • Vieta E, Bourin M, Sanchez R, Marcus R, Stock E, McQuade R, Carson W, Abou-Gharbia N, Swanink R, Iwamoto T, Aripoprazole Study G (2005) Effectiveness of aripiprazole v. haloperidol in acute bipolar mania: double-blind, randomised, comparative 12-week trial. Br J Psychiatry 187:235–242

    Article  PubMed  Google Scholar 

  • Wang RY, de Montigny C, Gold BI, Roth RH, Aghajanian GK (1979) Denervation supersensitivity to serotonin in rat forebrain: single cell studies. Brain Res 178:479–497

    Article  PubMed  CAS  Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    PubMed  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa Y, Kuroki T, Kawahara T, Tashiro N, Uchimura H (1998) Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex. Eur J Pharmacol 341:45–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Gobbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labonte, B., Bambico, F.R. & Gobbi, G. Potentiation of excitatory serotonergic responses by MK-801 in the medial prefrontal cortex. Naunyn-Schmied Arch Pharmacol 380, 383–397 (2009). https://doi.org/10.1007/s00210-009-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0446-4

Keywords

Navigation