Skip to main content
Log in

The Oka principle for holomorphic Legendrian curves in \(\mathbb {C}^{2n+1}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let M be a connected open Riemann surface. We prove that the space \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) of all holomorphic Legendrian immersions of M to \(\mathbb {C}^{2n+1}\), \(n\ge 1\), endowed with the standard holomorphic contact structure, is weakly homotopy equivalent to the space \(\mathscr {C}(M,\mathbb {S}^{4n-1})\) of continuous maps from M to the sphere \(\mathbb {S}^{4n-1}\). If M has finite topological type, then these spaces are homotopy equivalent. We determine the homotopy groups of \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) in terms of the homotopy groups of \(\mathbb {S}^{4n-1}\). It follows that \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) is \((4n-3)\)-connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F., López, F.J.: Minimal surfaces in minimally convex domains. Preprint arXiv:1510.04006

  2. Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F., López, F.J.: Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves. Proc. Lond. Math. Soc. (3) 111(4), 851–886 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alarcón, A., Forstnerič, F.: Every conformal minimal surface in \({\mathbb{R}}^3\) is isotopic to the real part of a holomorphic null curve. J. Reine Angew. Math. doi:10.1515/crelle-2015-0069

  4. Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196(3), 733–771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alarcón, A., Forstnerič, F., López, F.J.: Holomorphic Legendrian curves. Preprint arXiv:1607.00634. Compositio Math. (to appear)

  6. Alarcón, A., Forstnerič, F., López, F.J.: Embedded minimal surfaces in \(\mathbb{R}^n\). Math. Z. 283(1), 1–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennequin, D.: Entrelacements et équations de Pfaff. In: Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Volume 107 of Astérisque, pp. 87–161. Soc. Math. France, Paris (1983)

  8. Eliashberg, Y.: Classification of contact structures on \({\mathbf{R}}^3\). Internat. Math. Res. Not. 3, 87–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eliashberg, Y., Mishachev, N.: Introduction to the \(h\)-Principle. Graduate Studies in Mathematics, vol. 48. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  10. F. Forstnerič. Hyperbolic complex contact structures on \({\mathbb{C}}^{2n+1}\). J. Geom. Anal. doi:10.1007/s12220-017-9800-9

  11. Forstnerič, F.: Stein manifolds and holomorphic mappings, volume 56 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Heidelberg (2011)

    Book  Google Scholar 

  12. Forstnerič, F., Lárusson, F.: The parametric h-principle for minimal surfaces in \(\mathbb{R}^n\) and null curves in \({\mathbb{C}}^n\). Preprint arXiv:1602.01529. Commun. Anal. Geom. (to appear)

  13. Fuchs, D., Tabachnikov, S.: Invariants of Legendrian and transverse knots in the standard contact space. Topology 36(5), 1025–1053 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geiges, H.: An introduction to contact topology. Cambridge Studies in Advanced Mathematics, vol. 109. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 9. Springer, Berlin (1986)

    Google Scholar 

  16. Gromov, M.L.: Convex integration of differential relations. I. Izv. Akad. Nauk SSSR Ser. Mat. 37, 329–343 (1973)

  17. Lárusson, F.: Absolute neighbourhood retracts and spaces of holomorphic maps from Stein manifolds to Oka manifolds. Proc. Am. Math. Soc. 143(3), 1159–1167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mergelyan, S .N.: On the representation of functions by series of polynomials on closed sets. Dokl. Akad. Nauk SSSR (N.S.) 78, 405–408 (1951)

    MathSciNet  Google Scholar 

  19. Oka, K.: Sur les fonctions analytiques de plusieurs variables. III. Deuxième problème de Cousin. J. Sci. Hiroshima Univ. Ser. A 9, 7–19 (1939)

    MATH  Google Scholar 

  20. Spring, D.: Convex integration theory. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2010)

  21. Stout, E.L.: Bounded holomorphic functions on finite Riemann surfaces. Trans. Am. Math. Soc. 120, 255–285 (1965)

    MATH  Google Scholar 

  22. Strøm, A.: Note on cofibrations. II. Math. Scand. 22, 130–142, (1968, 1969)

Download references

Acknowledgements

F. Forstnerič is supported in part by research program P1-0291 and Grant J1-7256 from ARRS, Republic of Slovenia. F. Lárusson is supported in part by Australian Research Council Grant DP150103442. The work on this paper was done at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo in the autumn of 2016. The authors would like to warmly thank the Centre for hospitality and financial support. We thank Antonio Alárcon and Francisco J. López for many helpful discussions on this topic, and Jaka Smrekar for his advice on topological issues concerning loop spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finnur Lárusson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forstnerič, F., Lárusson, F. The Oka principle for holomorphic Legendrian curves in \(\mathbb {C}^{2n+1}\) . Math. Z. 288, 643–663 (2018). https://doi.org/10.1007/s00209-017-1904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1904-1

Keywords

Mathematics Subject Classification

Navigation