Skip to main content
Log in

Representation theory and an isomorphism theorem for the framisation of the Temperley–Lieb algebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we describe the irreducible representations and give a dimension formula for the framisation of the Temperley–Lieb algebra. We then prove that the framisation of the Temperley–Lieb algebra is isomorphic to a direct sum of matrix algebras over tensor products of classical Temperley–Lieb algebras. This allows us to construct a basis for it. We also study in a similar way the complex reflection Temperley–Lieb algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chlouveraki, M., Juyumaya, J., Karvounis, K., Lambropoulou, S.: Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebras. arXiv:1505.06666

  2. Chlouveraki, M., Lambropoulou, S.: The Yokonuma–Hecke algebras and the HOMFLYPT polynomial. J. Knot Theory Ramif. 22(14), 1350080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chlouveraki, M., Pouchin, G.: Determination of the representations and a basis for the Yokonuma–Temperley–Lieb algebra. Algebras Represent. Theory 18(2), 421–447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chlouveraki, M., Poulain d’Andecy, L.: Representation theory of the Yokonuma–Hecke algebra. Adv. Math. 259, 134–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Espinoza, J., Ryom-Hansen, S.: Cell Structures for the Yokonuma–Hecke Algebra and the Algebra of Braids and Ties. arXiv: 1506.00715

  6. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras. London Mathematical Society Monographs, New Series 21. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  7. Goundaroulis, D., Juyumaya, J., Kontogeorgis, A., Lambropoulou, S.: The Yokonuma–Temperley–Lieb algebra. Banach Cent. Publ. 103, 24 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Goundaroulis, D., Juyumaya, J., Kontogeorgis, A., Lambropoulou, S.: Framization of the Temperley–Lieb algebra. Math. Res. Lett. arXiv:1304.7440

  9. Hoefsmit, P.: Representations of Hecke Algebras of Finite Groups with BN-Pairs of Classical Type. PhD thesis, University of British Columbia (1974)

  10. Jacon, N.: Poulain d’Andecy, L.: An isomorphism theorem for Yokonuma-Hecke algebras and applications to link invariants. Math. Z. 283(1), 301–338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126(2), 335–388 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Juyumaya, J.: Sur les nouveaux générateurs de l’algèbre de Hecke H(G, U,1). J. Algebra 204, 49–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Juyumaya, J.: Markov trace on the Yokonuma–Hecke algebra. J. Knot Theory Ramif. 13, 25–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Juyumaya, J., Kannan, S.: Braid relations in the Yokonuma–Hecke algebra. J. Algebra 239, 272–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Juyumaya, J., Lambropoulou, S.: \(p\)-adic framed braids. Topol. Appl. 154, 1804–1826 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Juyumaya, J., Lambropoulou, S.: An invariant for singular knots. J. Knot Theory Ramif. 18(6), 825–840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Juyumaya, J., Lambropoulou, S.: An adelic extension of the Jones polynomial. In: Banagl, M., Vogel, D. (eds.) The Mathematics of Knots, Contributions in the Mathematical and Computational Sciences, vol. 1. Springer, Berlin (2011)

    Google Scholar 

  19. Juyumaya, J., Lambropoulou, S.: \(p\)-adic framed braids II. Adv. Math. 234, 149–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Juyumaya, J., Lambropoulou, S.: On the framization of knot algebras. In: Kauffman, L.H., Manturov, V. (eds.) New Ideas in Low-dimensional Topology. Series of Knots and Everything, World Scientific Press (2014)

  21. Lusztig, G.: Character sheaves on disconnected groups VII. Represent. Theory 9, 209–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Temperley, N., Lieb, E.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. R. Soc. Ser. A 322, 251–280 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thiem, N.: Unipotent Hecke Algebras: The Structure, Representation Theory, and Combinatorics. Ph.D Thesis, University of Wisconsin (2004)

  24. Thiem, N.: Unipotent Hecke algebras of \({{\rm GL}}_n({\mathbb{F}}_q)\). J. Algebra 284, 559–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thiem, N.: A skein-like multiplication algorithm for unipotent Hecke algebras. Trans. Am. Math. Soc. 359(4), 1685–1724 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yokonuma, T.: Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini. C. R. Acad. Sci. Paris 264, 344–347 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chlouveraki.

Additional information

We are grateful to Dimoklis Goundaroulis, Jesús Juyumaya, Aristides Kontogeorgis and Sofia Lambropoulou for introducing us to this whole range of problems, and for many fruitful conversations. We would also like to thank Tamás Hausel for his interesting questions that led us to provide some extra results on the Yokonuma–Hecke algebra. Finally, we would like to thank Loïc Poulain d’Andecy and Nicolas Jacon for our useful conversations on the second part of this paper. This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: THALIS. The second author gratefully acknowledges financial support of EPSRC through the Grant Ep/I02610x/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chlouveraki, M., Pouchin, G. Representation theory and an isomorphism theorem for the framisation of the Temperley–Lieb algebra. Math. Z. 285, 1357–1380 (2017). https://doi.org/10.1007/s00209-016-1751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1751-5

Keywords

Mathematics Subject Classification

Navigation