Skip to main content
Log in

A note on Kähler–Ricci flow

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let g(t) with \({t\in [0,T)}\) be a complete solution to the Kähler–Ricci flow: \({\frac{d}{dt}g_{i\bar j}=-R_{i\bar j}}\) where T may be ∞. In this article, we show that the curvature of g(t) is uniformly bounded if the solution g(t) is uniformly equivalent. This result is stronger than the main result in Šešum (Am J Math 127(6):1315–1324, 2005) within the category of Kähler–Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chau A.: Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds. J. Differ. Geom. 66(2), 211–232 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Chau A., Tam L.-F.: A C 0-estimate for the parabolic Monge–Ampère equation on complete non-compact Käler manifolds. Compos. Math. 146(1), 259–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen B.-L., Zhu X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74(1), 119–154 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Hamilton, R.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Cambridge (1995)

  6. Šešum N.: Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MATH  Google Scholar 

  7. Shi W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94–220 (1997)

    MATH  Google Scholar 

  8. Shi W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    MATH  Google Scholar 

  9. Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampre equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjie Yu.

Additional information

C. Yu’s research was partially supported by the National Natural Science Foundation of China (11001161), (10901072) and GDNSF (9451503101004122).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C. A note on Kähler–Ricci flow. Math. Z. 272, 191–201 (2012). https://doi.org/10.1007/s00209-011-0929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0929-0

Keywords

Mathematics Subject Classification (2010)

Navigation