Skip to main content
Log in

The \({\square_{b}}\) heat equation and multipliers via the wave equation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Recently, Nagel and Stein studied the \({\square_{b}}\) -heat equation, where \({\square_{b}}\) is the Kohn Laplacian on the boundary of a weakly pseudoconvex domain of finite type in \({\mathbb{C}^2}\) . They showed that the Schwartz kernel of \({e^{-t\square_{b}}}\) satisfies good “off-diagonal” estimates, while that of \({e^{-t\square_{b}}-\pi}\) satisfies good “on-diagonal” estimates, where π denotes the Szegö projection. We offer a simple proof of these results, which easily generalizes to other, similar situations. Our methods involve adapting the well-known relationship between the heat equation and the finite propagation speed of the wave equation to this situation. In addition, we apply these methods to study multipliers of the form \({m(\square_{b})}\) . In particular, we show that \({m(\square_{b})}\) is an NIS operator, where m satisfies an appropriate Mihlin–Hörmander condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulos G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Am. Math. Soc. 120(3), 973–979 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Christ M.: L p bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328(1), 73–81 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang D.-C., Nagel A., Stein E.M.: Estimates for the \({\overline\partial}\) -Neumann problem in pseudoconvex domains of finite type in C2. Acta Math. 169(3–4), 153–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Folland G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  5. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

  6. Jerison D.S., Sánchez-Calle A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35(4), 835–854 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Koenig K.D.: On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Am. J. Math. 124(1), 129–197 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Melrose, R.: Propagation for the wave group of a positive subelliptic second-order differential operator. Hyperbolic equations and related topics (Katata/Kyoto, 1984), pp. 181–192. Academic Press, Boston, (1986)

  9. Müller, D.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg groups. Lecture notes. Padova, June 2004

  10. Nagel A., Rosay J.-P., Stein E.M., Wainger S.: Estimates for the Bergman and Szegő kernels in C2. Ann. Math. (2) 129(1), 113–149 (1989)

    Article  MathSciNet  Google Scholar 

  11. Nagel A., Stein E.M.: Differentiable control metrics and scaled bump functions. J. Differential Geom. 57(3), 465–492 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Nagel A., Stein E.M.: The \({\square_{b}}\) -heat equation on pseudoconvex manifolds of finite type in \({\mathbb{C}^2}\) . Math. Z. 238(1), 37–88 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1–2), 103–147 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Raich A.: Pointwise estimates for relative fundamental solutions of heat equations in \({\mathbb{R} \times \mathbb{C}}\) . Math. Z. 256(1), 193–220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sikora A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247(3), 643–662 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stein, E.M.: Singular Integrals and Differentiability Properties Of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  17. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III

  18. Street B.: An algebra containing the two-sided convolution operators. Adv. Math. 219, 251–315 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Street.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Street, B. The \({\square_{b}}\) heat equation and multipliers via the wave equation. Math. Z. 263, 861–886 (2009). https://doi.org/10.1007/s00209-008-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0443-1

Keywords

Navigation