Skip to main content

Advertisement

Log in

Flow by mean curvature of slowly rotating liquid drops toward stable energy minimisers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish sufficient conditions for uniqueness in the context of an energy minimisation property derived earlier by the author for rotating liquid drops of arbitrary dimension. In particular, we obtain unique, global solutions of an associated geometric evolution equation whenever appropriate restrictions are placed on an initial condition corresponding to a fixed angular velocity. These solutions are demonstrated to converge smoothly to a known stable minimal equilibrium, and we prove that the boundary of each such energy minimiser is uniquely determined in a Lipschitz neighbourhood of the unit sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albano S., Gonzalez E.H.A.: Rotating drops. Indiana Univ. Math. J. 32(5), 687–702 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. 2(2), 151–171 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brakke K.A.: The Motion of a Surface by its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    Google Scholar 

  4. Chandrasekhar S.: The stability of a rotating liquid drop. Proc. R. Soc. Ser. A 286, 1–26 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ecker K.: Regularity Theory for Mean Curvature Flow. Progress in Non-Linear Differential Equations and their Applications, vol. 57. Birkhäuser, Boston (2004)

    Google Scholar 

  6. Escher J., Simonett G.: The volume preserving mean curvature flow near spheres. Proc. Am. Math. Soc. 126(9), 2789–2796 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, New Jersey (1964)

    MATH  Google Scholar 

  8. Hamilton R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Hölder E.: Gleichgewichtsfiguren rotierender Flüssigkeiten mit Oberflächenspannung. Math. Z. 25, 188–206 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huisken G.: Flow by mean curvature of convex hypersurfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Huisken G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MATH  MathSciNet  Google Scholar 

  12. Huisken G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    MATH  MathSciNet  Google Scholar 

  13. Kuwert E., Schätzle R.: Gradient flow for the Willmore functional. Comm. Anal. Geom. 10(2), 307–339 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Lichtenstein L.: Gleichgewichtsfiguren Rotierender Flüssigkeiten. Springer, Berlin (1933)

    Google Scholar 

  15. Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  16. McCoy J.A.: The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)

    MATH  MathSciNet  Google Scholar 

  17. McCoy J.A.: Mixed volume preserving curvature flows. Calc. Var. 24(2), 131–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Plateau, J.A.F.: Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. The Annual Report of the Board of Regents of the Smithsonian Institution, pp. 207–285 (1863)

  19. Lord Rayleigh: The equilibrium of revolving liquid under capillary force. Philos. Mag. 28, 161–170 (1914)

    Google Scholar 

  20. Wilkin-Smith N.: A class of stable energy minimisers for the rotating drop problem. J. Math. Anal. Appl. 332(1), 577–606 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Wilkin-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkin-Smith, N. Flow by mean curvature of slowly rotating liquid drops toward stable energy minimisers. Math. Z. 262, 743–774 (2009). https://doi.org/10.1007/s00209-008-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0398-2

Mathematics Subject Classification (2000)

Navigation