Skip to main content
Log in

Iwasawa main conjecture for the Carlitz cyclotomic extension and applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove an Iwasawa Main Conjecture for the class group of the \(\mathfrak {p}\)-cyclotomic extension \(\mathcal {F}\) of the function field \(\mathbb {F}_q(\theta )\) (\(\mathfrak {p}\) is a prime of \(\mathbb {F}_q[\theta ]\)), showing that its Fitting ideal is generated by a Stickelberger element. We use this and a link between the Stickelberger element and a \(\mathfrak {p}\)-adic L-function to prove a close analog of the Ferrero–Washington Theorem for \(\mathcal {F}\) and to provide information on the \(\mathfrak {p}\)-adic valuations of the Bernoulli-Goss numbers \(\beta (j)\) (i.e., on the values of the Carlitz-Goss \(\zeta \)-function at negative integers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We shall not distinguish between a prime ideal of A, like \(\mathfrak {p}\), and the place of F corresponding to it.

  2. The map \(\omega _\mathfrak {p}\) can also be defined as the morphism of \(\mathbb {F}\)-algebras such that \(v_\mathfrak {p}(\theta -\omega _{\mathfrak {p}}(\theta ))\geqslant 1\): it satisfies \(\omega _\mathfrak {p}(a)\equiv a \pmod {\mathfrak {p}}\) and corresponds to the choice of a root of \(\pi _{\mathfrak {p}}\) in \(\overline{\mathbb {F}}\) (because \(\pi _\mathfrak {p}=\pi _\mathfrak {p}(\theta )\in A=\mathbb {F}[\theta ]\) and we have \(\pi _\mathfrak {p}(\theta )\equiv \pi _\mathfrak {p}(\omega _{\mathfrak {p}}(\theta ))\pmod \mathfrak {p}\), therefore \(\pi _\mathfrak {p}(\omega _{\mathfrak {p}}(\theta ))\equiv 0\)).

  3. By R-valued distributions on a locally profinite group G we mean the linear functionals on the space of compactly supported locally constant functions \(G\rightarrow R\).

  4. Readers are warned that the notation in [41] is different from ours: our \(S_n(j)\) becomes \(S_n(-j)\) in [41].

  5. This definition of \(\mathbb {S}_\mathfrak {p}\) - the same as in [39, §5.5(b)] - differs from the one in [21], where the factor \(\mathbb {C}_\mathfrak {p}^*\) is missing. We decided to insert this factor in order to emphasize the symmetry with \(\mathbb {S}_\infty \).

References

  1. Anderson, G.W.: A two-dimensional analogue of Stickelberger theorem, Goss, David (ed.) et al., The arithmetic of function fields. Proceedings of the workshop at the Ohio State University, June 17–26, 1991, Columbus, Ohio (USA). Berlin: Walter de Gruyter. Ohio State Univ. Math. Res. Inst. Publ. 2, 51-73 (1992)

  2. Anglès, B.: On \(L\)-functions of cyclotomic function fields. J. Number Theory 116(2), 247–269 (2006)

    Article  MathSciNet  Google Scholar 

  3. Anglès, B., Taelman, L.: Arithmetic of characteristic \(p\) special \(L\)-values (with an appendix by V. Bosser). Proc. Lond. Math. Soc. (3) 110, 1000–1032 (2015)

    Article  MathSciNet  Google Scholar 

  4. Balister, P.N., Howson, S.: Note on Nakayama’s lemma for compact \(\Lambda \)-modules. Asian J. Math. 1(2), 224–229 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bandini, A., Longhi, I.: Control theorems for elliptic curves over function fields. Int. J. Number Theory 5(2), 229–256 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bandini, A., Bars, F., Longhi, I.: Aspects of Iwasawa theory over function fields, to appear in the EMS Congress Reports, arXiv:1005.2289 [math.NT] (2010)

  7. Bandini, A., Bars, F., Longhi, I.: Characteristic ideals and Iwasawa theory. New York J. Math 20, 759–778 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bertolini, M., Darmon, H.: Iwasawa’s main conjecture for elliptic curves over anticyclotonic \(\mathbb{Z}_p\)-extensions. Ann. Math. (2) 162(1), 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, Prog. Math. 86, 333–400 (1990)

  10. Burns, D.: Congruences between derivatives of geometric \(L\)-functions. Invent. Math. 184(2), 221–256 (2011)

    Article  MathSciNet  Google Scholar 

  11. Burns, D., Lai, K.F., Tan, K.-S.: On geometric main conjectures, appendix to [10]. Invent. Math. 184(2), 249–254 (2011)

    Article  Google Scholar 

  12. Burns, D., Trihan, F.: On geometric Iwasawa theory and special values of zeta functions. In: Bars, F., et al. (eds.) Arithmetic geometry over global function fields, Advanced Courses in Mathematics CRM Barcelona, pp. 121–181. Birkäuser, Basel (2014)

    Google Scholar 

  13. Carlitz, L.: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137–168 (1935)

    Article  MathSciNet  Google Scholar 

  14. Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The \(GL_2\) main conjecture for elliptic curves without complex multiplication. Inst. Hautes Etud. Sci. Publ. Math. 101, 163–208 (2005)

    Article  Google Scholar 

  15. Cornacchia, P., Greither, C.: Fitting ideals of class groups of real fields with prime power conductor. J. Number Theory 73, 459–471 (1998)

    Article  MathSciNet  Google Scholar 

  16. Crew, R.: \(L\)-functions of \(p\)-adic characters and geometric Iwasawa theory. Invent. Math. 88(2), 395–403 (1987)

    Article  MathSciNet  Google Scholar 

  17. Dodge, J., Popescu, C.: The refined Coates-Sinnot Conjecture for characteristic \(p\) global fields. J. Number Theory 133(6), 2047–2065 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ferrero, B., Washington, L.: The Iwasawa invariant \(\mu _p\) vanishes for abelian number fields. Ann. of Math. (2) 109(2), 377–395 (1979)

    Article  MathSciNet  Google Scholar 

  19. Gekeler, E.-U.: On power sums of polynomials over finite fields. J. Number Theory 30(1), 11–26 (1988)

    Article  MathSciNet  Google Scholar 

  20. Goss, D.: \(v\)-adic Zeta Functions, \(L\)-series and measures for function fields. Invent. Math. 55, 107–116 (1979)

    Article  MathSciNet  Google Scholar 

  21. Goss, D.: Basic structures of function field arithmetic, Ergebnisse der Mathematik 35. Springer-Verlag, Berlin (1996)

    Book  Google Scholar 

  22. Greither, C., Kurihara, M.: Stickelberger elements, Fitting ideals of class groups of CM-fields and dualisation. Math. Z. 260(4), 905–930 (2008)

    Article  MathSciNet  Google Scholar 

  23. Greither, C., Popescu, C.D.: The Galois module structure of \(\ell \)-adic realizations of Picard 1-motives and applications, Int. Math. Res. Not. (5), 986–1036 (2012)

  24. Greither, C., Popescu, C.D.: Fitting ideals of \(\ell \)-adic realizations of Picard 1-motives and class groups of global function fields. J. Reine Angew. Math. 675, 223–247 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Guo, L., Shu, L.: Class numbers of cyclotomic function fields. Trans. Amer. Math. Soc. 351(11), 4445–4467 (1999)

    Article  MathSciNet  Google Scholar 

  26. Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms, Berthelot, P. (ed.) et al., Cohomologies \(p\)-adique set applications arithmétiques (III), Astérisque 295,117–290 (2004)

  27. Kato, K.: Iwasawa theory and generalizations. International Congress of Mathematicians. Vol I, Eur. Math. Soc., Zürich 12, 335–357 (2007)

  28. Lai, K.F., Longhi, I., Tan, K.-S., Trihan, F.: The Iwasawa Main conjecture for constant ordinary abelian varieties over function fields. Proc. Lond. Math. Soc. (3) 112, 1040–1058 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mazur, B., Wiles, A.: Class fields of abelian extensions of \(\mathbb{Q}\). Invent. Math. 76, 179–330 (1984)

    Article  MathSciNet  Google Scholar 

  30. Popescu, C.D.: On the Coates-Sinnott conjecture. Math. Nachr. 282(10), 1370–1390 (2009)

    Article  MathSciNet  Google Scholar 

  31. Rosen, M.: Formal Drinfeld modules. J. Number Theory 103(2), 234–256 (2003)

    Article  MathSciNet  Google Scholar 

  32. Rosen, M.: Number theory in function fields, GTM 210. Springer-Verlag, New York (2002)

    Book  Google Scholar 

  33. Serre, J.-P.: Algebraic groups and class fields, GTM 117. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  34. Sinnott, W.: Dirichelet series in function fields. J. Number Theory 128, 1893–1899 (2008)

    Article  MathSciNet  Google Scholar 

  35. Skinner, C., Urban, E.: The Iwasawa Main Conjectures for \(GL_2\). Invent. Math. 195(1), 1–277 (2014)

    Article  MathSciNet  Google Scholar 

  36. Taelman, L.: Special \(L\)-values of Drinfeld modules. Annals of Math. 175, 369–391 (2012)

    Article  MathSciNet  Google Scholar 

  37. Taelman, L.: A Herbrand-Ribet theorem for function fields. Invent. Math. 188, 253–275 (2012)

    Article  MathSciNet  Google Scholar 

  38. Tate, J.: Les conjectures de Stark sur les Fonctions \(L\) d’Artin en \(s=0\), Progress in Mathematics 47, Birkhäuser, (1984)

  39. Thakur, D.S.: Function field arithmetic. World Scientific Publishing Co., Inc, River Edge, NJ (2004)

    Book  Google Scholar 

  40. Thakur, D.S.: Power sums with applications to multizeta and zeta zero distribution for \(\mathbb{F}_q[t]\). Finite Fields Appl. 15(4), 534–552 (2009)

    Article  MathSciNet  Google Scholar 

  41. D.S. Thakur Power sums of polynomials over finite fields and applications: a survey, Finite Fields Appl. 32 (2015), 171–191

  42. Washington, L.C.: Introduction to cyclotomic fields, 2nd ed., GTM 83, Springer-Verlag, New York, (1997)

  43. Yu, J.: Transcendance and special zeta values in chatracteristic \(p\). Ann. of Math. 134, 1–23 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

All the authors thank the MTM 2009-10359, which funded a workshop on Iwasawa theory for function fields in 2010 and supported the authors during their stay in Barcelona in the summer of 2013, and the CRM (Centre de Recerca Matemàtica, Bellaterra, Barcelona) for providing a nice environment to work on this project. The fourth author thanks NCTS/TPE for support to travel to Barcelona in summer 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Bars.

Additional information

Communicated by Toby Gee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Bars supported by MTM2016-75980-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anglès, B., Bandini, A., Bars, F. et al. Iwasawa main conjecture for the Carlitz cyclotomic extension and applications. Math. Ann. 376, 475–523 (2020). https://doi.org/10.1007/s00208-019-01875-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01875-8

Mathematics Subject Classification

Navigation